
H A R D W A R E A C C E L E R A T I O N W I T H
Z E R O - C O P Y M E M O R Y M A N A G E M E N T
F O R H E T E R O G E N E O U S C O M P U T I N G

O R E N B E L L

C H R I S G I L L

X U A N Z H A N G

CPS-1739643

DESIGN OF A SELF-DRIVING CAR

2

HAZCAT

• Communication middleware

• Zero-copy

• Tested with ROS2 applications

– ROS2 is framework for developing

robotics

• Support for pub/sub application

3

INTRO TO PUBLISH/SUBSCRIBE
(PUB/SUB)

• Topic represents portion of system state

– Frame from front camera

– Planned trajectory

– Etc

• Publishers send data

• Subscribers receive data

• Data called "messages"

• Topic modelled as message queue

4

Pub SubLidar

GPUGPU

USING THE GPU

• Copying in and out of GPU is bad

– Time consuming

– Synchronization can affect unrelated tasks

using it

• Goal: keep data in GPU

• Related problem: copying data into topic

– Existing solution: Zero-copy

5

Pub SubLidar

RELATED WORK: ICEORYX©

• Inter-process zero copy

• Central pool of shared memory buffers

– Various sizes

– Configured and pre-allocated prior to

runtime

• Borrow/return semantics

– Publishers surrender ownership

after publication

– Messages marked immutable

– Prevents race conditions

6

©Robert Bosch, 2019

RELATED WORK: ICEORYX©

Drawbacks

• Centralized bottleneck

• Must be configured by skilled developer

• Shared memory only accessible from

CPU

7

©Robert Bosch, 2019

ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

8

ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

• Custom allocation strategies

– Best-effort dynamic allocation

– Reliable static pre-allocation
Reliability

Flexibility

9

ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

• Custom allocation strategies

– Best-effort dynamic allocation

– Reliable static pre-allocation

• Prevent race conditions

10

Lidar

ZERO-COPY: DECENTRALIZED MEMORY
MANAGEMENT

• One queue per topic

– Resides in shared memory

• Topic name for lookup

• Resized during publisher/subscriber

registration

– Subscribers inform size of message queue

– Initialization cost

11

Lidar
Car

Position

ZERO-COPY: CUSTOM ALLOCATION
STRATEGIES

• Queues store tokens

– Tokens are allocator ID + offset

– Footprint of buffers very small

• Allocators exist in shared memory

– Accessible from multiple processes

12

Allocator

and mem

pool

Allocator

and mem

pool

ZERO-COPY: HETEROGENOUS MEMORY
SUPPORT

• Extra queue per memory domain

– Extra queues store extra message copies

– Additional queue with metadata

• Allocators support only one domain

• Publishers/subscribers specify allocator

preference

• Copying between domains performed as

needed

13

CPU GPU

Ref counter, locks,

availability bits,

whatever Allocator

and mem

pool

Allocator

Mapped

VRAM

ALLOCATOR DESIGN

• Local Partition

– Pointers to function implementations

• Shared Partition

– Metadata and overhead

• Memory Pool

– Virtual, often sparsely mapped

– Actual data

– Assumed unreadable by host code

14

PUBLICATION PROCEDURE

15

GPU GPULidar

CPU GPU1. Pub creates message with

allocator

2. Lock free row in queue

3. Token stored in GPU field

4. Pub frees lock

SUBSCRIPTION PROCEDURE

16

GPU

CPU

GPU

CPU

Lidar

CPU GPU1. If message not in preferred

domain

1. Lock CPU field

2. Copy of message is made

3. Store token in CPU field

4. Subscriber frees lock

2. Read message from token

3. If all subscribers done, deallocate

message

TWO-COMPONENT EXPERIMENT
• Inter-component copy

– Copy messages between nodes

• Intra-component copy

– Copy data into hardware accelerated

device

• Computation

17Time

WITHOUT HARDWARE ACCELERATION

18

WITH HARDWARE ACCELERATION

19

CONCLUSIONS

• Zero-Copy System

– Heterogenous-memory awareness

– No configuration needed beforehand

• Created/resized at runtime during initialization

– Duplicate copies of messages for each memory domain

• Benefits

– Cap on memory operations

• For n domains, max of n-1 copy operations per message

– Reduced opportunity for indeterminism and unwanted synchronization

– Highly performant, in principle

• GitHub: https://github.com/nightduck/hazcat

20

https://github.com/nightduck/hazcat

ROS2 OVERVIEW

21

Node

Node

Node

Node
Node

Lidar

Cams

Object

Data

Lidar

Groups

Car

Position

Senso

rs

Kalm

an

Filter

Obje

ct

Dete

ction

kNN

Locali

zatio

n

ROS2 Overview: Pub/Sub

Node

Node

Node

Node

Node

Node
Node

ROS2 OVERVIEW: PROCESSING CHAINS

22

INTRO TO ZERO-COPY

• What if task keeps running after

publishing?

– Contents of message enter race

condition

• Need mechanism to surrender messages

23

0x5570A400

ALLOCATORS

• Responsible for allocating/deallocating

memory

• Static allocators pre-allocate memory

pools

24

INTRA-PROCESS ZERO COPY FOR GPUS

Template for heterogenous memory allocators (language-agnostic)

25

Defined

by user

ALLOCATOR SPECS

• domain

– Same among allocators in same memory domain

– Different among allocators not in same memory domain

• allocate

– Provisions new memory

• deallocate

– Frees memory

– Can be called from multiple processes

26

Process B

Virtual Address Space

Process A

Virtual Address Space

ALLOCATOR SPECS

• bootstrap

– Loads allocator into new process

– Uses virtual memory

27

(16 exabytes)

ALLOCATOR SPECS

• copy_from

– How to copy from current domain into main memory

• copy_to

– How to copy to current domain from main memory

• copy

– Wrapper for calling two above in sequence

– Copies device memory to other device memory

• Uses main memory as intermediate

– Can be overridden, to bypass main memory

28

ALLOCATOR SPECS

convert(void * ptr, int size, Allocator &other)

• Converts memory from one allocator to another

• 4 cases, based on memory domain

– Same to same – pass pointer through w/o copy

– Device to CPU – call copy_from on other allocator

– CPU to device – call copy_to on self

– Device to device – call copy

29

DESIGN OF A SELF-DRIVING CAR

30

Sensors

Object

Perception

Road Perception

Mission

Planning

Scenario

Planning
Control

Localization

Vehicle Interface

SELF DRIVING CARS

31

	Default Section
	Slide 1: Hardware Acceleration with Zero-Copy Memory Management for Heterogeneous Computing
	Slide 2: Design of a Self-Driving Car
	Slide 3: Hazcat
	Slide 4: Intro to PUBLISH/SUBSCRIBE (PUB/SUB)
	Slide 5: Using the GPU
	Slide 6: Related Work: Iceoryx©
	Slide 7: Related Work: Iceoryx©
	Slide 8: Zero-copy: Our Goals
	Slide 9: Zero-copy: Our Goals
	Slide 10: Zero-copy: Our Goals
	Slide 11: Zero-Copy: Decentralized Memory Management
	Slide 12: Zero-Copy: Custom Allocation Strategies
	Slide 13: Zero-copy: Heterogenous Memory Support
	Slide 14: Allocator Design
	Slide 15: PUBLICATION Procedure
	Slide 16: SUBSCRIPTION Procedure
	Slide 17: TWO-Component Experiment
	Slide 18: Without Hardware Acceleration
	Slide 19: With Hardware Acceleration
	Slide 20: Conclusions
	Slide 21: ROS2 Overview
	Slide 22: ROS2 Overview: Processing Chains
	Slide 23: Intro to Zero-Copy
	Slide 24: Allocators
	Slide 25: Intra-process Zero Copy for GPUs
	Slide 26: Allocator Specs
	Slide 27: Allocator Specs
	Slide 28: Allocator Specs
	Slide 29: Allocator Specs
	Slide 30: Design of a Self-Driving Car
	Slide 31: Self Driving Cars

