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DESIGN OF A SELF-DRIVING CAR
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HAZCAT

• Communication middleware

• Zero-copy

• Tested with ROS2 applications

– ROS2 is framework for developing 

robotics

• Support for pub/sub application
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INTRO TO PUBLISH/SUBSCRIBE 
(PUB/SUB)

• Topic represents portion of system state

– Frame from front camera

– Planned trajectory

– Etc

• Publishers send data

• Subscribers receive data

• Data called "messages"

• Topic modelled as message queue
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GPUGPU

USING THE GPU

• Copying in and out of GPU is bad

– Time consuming

– Synchronization can affect unrelated tasks 

using it

• Goal: keep data in GPU

• Related problem: copying data into topic

– Existing solution: Zero-copy
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RELATED WORK: ICEORYX©

• Inter-process zero copy

• Central pool of shared memory buffers

– Various sizes

– Configured and pre-allocated prior to 

runtime

• Borrow/return semantics

– Publishers surrender ownership 

after publication

– Messages marked immutable

– Prevents race conditions

6

©Robert Bosch, 2019



RELATED WORK: ICEORYX©

Drawbacks

• Centralized bottleneck

• Must be configured by skilled developer

• Shared memory only accessible from 

CPU
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ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

8



ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

• Custom allocation strategies

– Best-effort dynamic allocation

– Reliable static pre-allocation
Reliability

Flexibility
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ZERO-COPY: OUR GOALS

• Support for heterogenous memory

– Zero copy within a memory domain

• Custom allocation strategies

– Best-effort dynamic allocation

– Reliable static pre-allocation

• Prevent race conditions
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ZERO-COPY: DECENTRALIZED MEMORY 
MANAGEMENT

• One queue per topic

– Resides in shared memory

• Topic name for lookup

• Resized during publisher/subscriber 

registration

– Subscribers inform size of message queue

– Initialization cost
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ZERO-COPY: CUSTOM ALLOCATION 
STRATEGIES

• Queues store tokens

– Tokens are allocator ID + offset

– Footprint of buffers very small

• Allocators exist in shared memory

– Accessible from multiple processes
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ZERO-COPY: HETEROGENOUS MEMORY 
SUPPORT

• Extra queue per memory domain

– Extra queues store extra message copies

– Additional queue with metadata

• Allocators support only one domain

• Publishers/subscribers specify allocator 

preference

• Copying between domains performed as 

needed
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ALLOCATOR DESIGN

• Local Partition

– Pointers to function implementations

• Shared Partition

– Metadata and overhead

• Memory Pool

– Virtual, often sparsely mapped

– Actual data

– Assumed unreadable by host code
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PUBLICATION PROCEDURE
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GPU GPULidar

CPU GPU1. Pub creates message with 

allocator

2. Lock free row in queue

3. Token stored in GPU field

4. Pub frees lock



SUBSCRIPTION PROCEDURE
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GPU

CPU

GPU

CPU

Lidar

CPU GPU1. If message not in preferred 

domain

1. Lock CPU field

2. Copy of message is made

3. Store token in CPU field

4. Subscriber frees lock

2. Read message from token

3. If all subscribers done, deallocate 

message



TWO-COMPONENT EXPERIMENT
• Inter-component copy

– Copy messages between nodes

• Intra-component copy

– Copy data into hardware accelerated 

device

• Computation
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WITHOUT HARDWARE ACCELERATION
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WITH HARDWARE ACCELERATION

19



CONCLUSIONS

• Zero-Copy System

– Heterogenous-memory awareness

– No configuration needed beforehand

• Created/resized at runtime during initialization

– Duplicate copies of messages for each memory domain

• Benefits

– Cap on memory operations

• For n domains, max of n-1 copy operations per message

– Reduced opportunity for indeterminism and unwanted synchronization

– Highly performant, in principle

• GitHub: https://github.com/nightduck/hazcat
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ROS2 OVERVIEW
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ROS2 OVERVIEW: PROCESSING CHAINS
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INTRO TO ZERO-COPY

• What if task keeps running after 

publishing?

– Contents of message enter race 

condition

• Need mechanism to surrender messages
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ALLOCATORS

• Responsible for allocating/deallocating 

memory

• Static allocators pre-allocate memory 

pools
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INTRA-PROCESS ZERO COPY FOR GPUS

Template for heterogenous memory allocators (language-agnostic)
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ALLOCATOR SPECS

• domain

– Same among allocators in same memory domain

– Different among allocators not in same memory domain

• allocate

– Provisions new memory

• deallocate

– Frees memory

– Can be called from multiple processes
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Process B

Virtual Address Space

Process A

Virtual Address Space

ALLOCATOR SPECS

• bootstrap

– Loads allocator into new process

– Uses virtual memory
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ALLOCATOR SPECS

• copy_from

– How to copy from current domain into main memory

• copy_to

– How to copy to current domain from main memory

• copy

– Wrapper for calling two above in sequence

– Copies device memory to other device memory

• Uses main memory as intermediate

– Can be overridden, to bypass main memory
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ALLOCATOR SPECS

convert(void * ptr, int size, Allocator &other)

• Converts memory from one allocator to another

• 4 cases, based on memory domain

– Same to same – pass pointer through w/o copy

– Device to CPU – call copy_from on other allocator

– CPU to device – call copy_to on self

– Device to device – call copy
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DESIGN OF A SELF-DRIVING CAR
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SELF DRIVING CARS
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