Reconciling ROS 2 with Classical Real-Time

Scheduling of Periodic Tasks

Harun Teper!, Oren Bell?>, Mario Giinzel!, Chris Gill?, Jian-Jia Chen’3

1TU Dortmund University, Germany
2Washington University at St. Louis, USA
3Lamarr Institute, Germany

May 8, 2025

® 6GEM m - PropRT

Partially supported by the German Federal Ministry of Education and Research (BMBF) and by the European Research Council (ERC).

technische universitat computer
dortmund G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 1/27

Introduction - Robot Operating System 2

Motivation

00
® ROS 2 as middleware for robotics systems o000 R 2
[N N]

® Enables creation of modular systems

® Features real-time capabilities

Applications

® Autonomous vehicles
® |ndustrial robotics

® Safety-critical systems

|2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 2/27

Introduction: Scheduling Comparison

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Executor

Established theory Limited theory
Deadline-driven Best effort

Fixed priority and dynamic priority Fixed priority

Periodic, sporadic tasks Sporadic tasks

he universitat computer
’ CS |2 science 12 Harun Teper (TUD, WSU, Lamarr) 3/27

Introduction

Contributions
® Examine incompatibilities between ROS 2 and classical scheduling theory
® |ntroduce modifications to the executor to enable compatibility

® Evaluate modified executor to determine its performance

universitat G |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 4 /27

Classical Real-Time Scheduling

Immediate release Scheduling policy
of ready jobs (EDF, RM)
Collection of
ready jobs

I computer
science 12 Harun Teper (TUD, WSU, Lamarr)

527

Classical Real-Time Scheduling

Immediate release Scheduling policy
of ready jobs (EDF, RM)

Collection of
ready jobs

— Well-established analytical frameworks exist

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 5 /27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

@~

@~

@

|| o,
o

t

T

10

T

15

T

20

@!dle QReady @Executing

25 30

Task | Period (P) | WCET (C) | Priority
T 10 3 1 (highest)
™ 30 10 2
T3 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

@~
O 7_2/\
O T3/\
0 5 10 15 20 30
t=0
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority

71 10 3 1 (highest)

T2 30 10 2

73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

®nT—

On

O

0 5 10 15 20 30
t=0
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
T3 30 10 3 (lowest)
I gggnpgéirz Harun Teper (TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

o] —
On
O
/r T T T T
0 5 10 15 20
t=3
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
T3 30 10 3 (lowest)
I gggnpgéirz Harun Teper (TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

@ T1Aﬁ
O 7_2/\ ’
@ =]
0 ! : 1‘0 1‘5 2‘0
t=3

@!dle QReady @Executing

Task | Period (P) | WCET (C) | Priority
T 10 3 1 (highest)
™ 30 10 2
T3 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

@]
O 7—2/\ ’
O T3/\
T 1\ T T T T
0 5 t—l(iO 15 20 25 30
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

@]
. 7'2’\ ’
@~
0 5 10 15 20
t=13
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

®nl— —
. 7—2/\ ’ ‘
O T3/\
0 5 10 R 20
t=13
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority

71 10 3 1 (highest)

T2 30 10 2

73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

Onf m—
. T2 ’ ‘
O T3/\
0 5 10 15 20
t=16
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

&~ m—
. T2 I ’ ‘
O 73 I ’ ‘
T T T /r T T T
0 5 10 15 20 25
t=16 30
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

S
. 7—2/\ ’ ‘
O T3/\ ’
T T T /r
0 5 10 1 2
> 2o
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

®nl— 1 —]
. T2 I ’ ‘
. 73 I ’ ‘
T T T T T ? T
0 5 10 15 20 2
t5=26 30
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

Ol [1 m—
. T2 I ’ ‘
. 73 I ’ ‘
T T T T T ? T
0 5 10 15 20 25 3
t=26 0
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

®nl [1 m—
. T2 I ’ ‘
. 73 I ’ ‘
T T T T T /I\ T
0 5 10 15 20 25 t—Z%O
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27

Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

On] I I I
O 2 ’ ‘
O 7_3” ’ ‘ A

0 5 10 15 20 25 3,

@!dle QReady @Executing

Task | Period (P) | WCET (C) | Priority
T 10 3 1 (highest)
™ 30 10 2
T3 30 10 3 (lowest)

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 6 /27

Background: ROS 2 Default Executor

3 Processing !
Window |

Collects at most one Execution of all
job per ready task Ordered set jobs in the wait set
of ready jobs

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 7/27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

20
20
B0
/r T T T T T T
0 5 10 15 20 25 30
t=0
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T 30 10 2
73 30 10 3 (lowest)

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

N

B@ -

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

BO -]

B@ -]

t20

T

T

@ Not activated @ Activated
@ Not in wait set@In wait set) Executing

T

T T

5 10 15 20 25 30
— Release --» Dropped release
-- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T 30 10 2
73 30 10 3 (lowest)

computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

N

B0]

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

20]

B0 =]

t20

T

T

@ Not activated @ Activated
@ Not in wait set@In wait set) Executing

T

T T

5 10 15 20 25 30
— Release --» Dropped release
-- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T 30 10 2
73 30 10 3 (lowest)

computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

=0T

.O 7—2/\

.O T3/\

0 5 10 15 20
t=0
@ Not activated @ Activated — Release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority

T 10 3 1 (highest)
T 30 10 2
T3 30 10 3 (lowest)

computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

---» Dropped release

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

=0T —
.O 7—2/\
.O T3/\
/r T T T T
0 10 15 20
t=3
@ Not activated @ Activated — Release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
T 10 3 1 (highest)
T 30 10 2
T3 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

---» Dropped release

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

=20 T1Aﬁ
2O -] |
O =]
0 t; 3 ‘ 1‘0 1‘5 2‘0 2‘5

@ Not activated (@ Activated

— Release --» Dropped release

@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

N T
.O T2/\ ’
.O T3/\

T 1\ T T T T

0 5 1 15 20 25 30
tzqo
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority

1 10 3 1 (highest)

T 30 10 2

73 30 10 3 (lowest)

computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

se-} I
.. 2 i ’
.O 7_3’\
0 5 10 15 20 25 30
t=13
@ Not activated @ Activated — Release ‘> Dropped release

@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

se-} I
.. 2 i ’
.O 73 i ‘
0 5 10 15 20 25 30
t=13
@ Not activated @ Activated — Release ‘> Dropped release

@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

se-f I 1
.. 7—2/\ ’
.O T3/\ ‘
T T T /r T
0 5 10 15 t§%0 25

@ Not activated (@ Activated

— Release --» Dropped release

@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

T T I
.. T2/\ ’
.. T3/\ ‘
T T T T ? T T
0 5 10 15 20 25 30
t=23
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (

non-preemptive, fixed priority)
AN

o | :
"e-| | E
.. T3/\
0 5 10 15 20 25 30
t=23
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority

1 10 3 1 (highest)

T 30 10 2

73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (

non-preemptive, fixed priority)
AN

s I .
"e-| | E
Q] i
T T T T T 1\ T
0 5 10 15 20 25 30
t=26
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

50— I .
D. 7_2’\ ’ ‘ E T
D. 7_3’\ ’ i A
0 5 10 15 20 25 3
t:%O
@ Not activated @ Activated — Release ‘> Dropped release
@ Not in wait set@In wait set) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority

1 10 3 1 (highest)

T 30 10 2

73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27

Schedule comparison

_ n I 1]
Classical TT T
Scheduling : | |

JRRERE ‘ nmnn 1]

0 5 10 15 20 25 30

nf— | o]

ROS 2 Default ™ : T
Executor | | :

BN Bl n mun RERRREA

0 5 10 15 20 25 30

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 9 /27

Schedule comparison

. n T — 1 1]
Classical TT T
Scheduling ? | |

gl ‘ ‘ N ‘ mEREl|
0 5 10 15 20 25 30

ROS 2 Default

™ ‘ ‘

Executor

T3 l

7;‘ A
B
i

0 5 10 15 20 25

S+—rr—r—

he universitat computer
d ’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr)

9/27

Problem Statement

Can we utilize the ROS 2 ecosystem to enable
compatibility with classical real-time scheduling theory?

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 10 /27

ROS 2 Events Executor

FIFO queue

|2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 11/ 27

ROS 2 Events Executor

Timers

Separation:
Handling release FIFO queue
in separate threads

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 11/ 27

ROS 2 Events Executor

Separation: Granularity:
Handling release FIFO queue Execution of first
in separate threads job in the queue
; ‘ I computer
- science 12 Harun Teper (TUD, WSU, Lamarr)

11/ 27

Enabling Compatibility with Classical Scheduling Theory

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Events Executor Default Executor

Established theory No theory Limited theory
Deadline-driven Best effort Best effort
Fixed priority and dynamic priority FIFO Fixed priority
Periodic, sporadic tasks Sporadic tasks Sporadic tasks
Preemptive and non-preemptive Non-preemptive Non preemptive

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 12 /27

Enabling Compatibility with Classical Scheduling Theory

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Events Executor Default Executor

Established theory i Established theory [Limited theory

Y

Deadline-driven Deadline-driven Best effort

e
A

i

A

Fixed priority and dynamic priority Fixed and dyn. pr. Fixed priority

A

Periodic, sporadic tasks Periodic tasks Sporadic tasks

Can we utilize the ROS 2 Events Executor to enable
compatibility with classical real-time scheduling theory?

A

e universitat computer
’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 12 /27

ROS 2 Events Executor - Subproblems

@ How to guarantee periodic release?

® How to add priority-based scheduling?

he universitat computer
d ’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 13 /27

ROS 2 Events Executor

Timers

Events
queue

FIFO queue

|2 computer
science 12 Harun Teper (TUD, WSU, Lamarr)

14 / 27

ROS 2 Events Executor

O Release:
Guaranteeing
periodic release

-t—U teo sc»e vers CS |2 computer
OOOOO science 12

FIFO queue

Harun Teper (TUD, WSU,

Lamarr)

14 / 27

ROS 2 Events Executor

Timers

Events
queue

O Release:
Guaranteeing FIFO queue
periodic release

Configurations

® Release-Execute: Separate thread for timer release AND execution

® Release-Only: Separate thread for timer release only

he universitat G |2 computer
d science 12 Harun Teper (TUD, WSU, Lamarr)

14 / 27

ROS 2 Events Executor - Release-Execute Configuration

Timer Management Thread

Timers @ @

- Events @
DDS Threads \ “*“® /Default Thread

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 15 /27

ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg

Events Executor (Release-Execute)

gulinslis n | F
T2 T2
0123456789 0123456789
Task | Period (P) | WCET (C) | Priority
T 2 1 1 (highest)
T 4 2 2 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

16 / 27

ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg Events Executor (Release-Execute)
gulinslis n | F
T2 Tzl\ N N
0123456789 0123456789
Task | Period (P) | WCET (C) | Priority
T 2 1 1 (highest)
T 4 2 2 (lowest)

No separation of timer release and execution

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 16 / 27

ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg

bl

Events Executor (Release-Execute)

A A~ A T A

T2/ AN Tzl\ AN AN
0123456789 0123456789
Task | Period (P) | WCET (C) | Priority
T 2 1 1 (highest)
T 4 2 2 (lowest)

No separation of timer release and execution
—No guarantee of periodic release due to non-preemptive execution

I computer
science 12

Harun Teper (TUD, WSU, Lamarr)

16 / 27

ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

I computer
science 12 Harun Teper (TUD, WSU, Lamarr)

17/ 27

ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 17 /27

ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 17 /27

ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution

Requirements

® Preemptive thread scheduling
® Prioritization of release threads over default thread

I computer
science 12 Harun Teper (TUD, WSU, Lamarr)

17/ 27

ROS 2 Events Executor

Events
queue

@ Release:
Guaranteeing FIFO queue
periodic release
v
tu s CS |2 Sombesd Harun Teper (TUD, WSU, Lamarr)

18 / 27

ROS 2 Events Executor

Events
queue

@ Release: @® Execution:
Guaranteeing FIFO queue Priority-based
periodic release scheduling

v

technische universitat computer
-t_U dortmund G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 18 /27

ROS 2 Events Executor - Priority-Based Scheduling

FIFO Queue

Push insert ——— 3 2 1 —— Pop

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 19 /27

ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert ——— 3 2 1 — Pop

e universitat [3 |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 19 /27

ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert ——— 3 2 1 — Pop

Prioritization

® Timers: Implicit priorities through periods

e universitat [3 |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 19 /27

ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert —— 3 2 1 — Pop

Prioritization

® Timers: Implicit priorities through periods

® Subscriptions: No prioritization interfaces provided by ROS 2

e universitat computer
’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 19 /27

ROS 2 Events Executor - Priority-Based Scheduling

Proposal: Add universal priority field to ROS 2 tasks

nische universitat [3 |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 20 /27

ROS 2 Events Executor - Subscription Prioritization

Modeling as Sporadic Tasks
— Each subscription gets a minimum inter-arrival time

>0

he universitat computer
d ’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 21 /27

ROS 2 Events Executor - Subscription Prioritization

Modeling as Sporadic Tasks
— Each subscription gets a minimum inter-arrival time

>0

Modeling as Limited Preemptive Tasks

— Subscriptions form processing chains

@ Subscription 7 Subscription 73

Non-preemptive Non-preemptive Non-preemptive

Preemption point Preemption point

I computer

.
U science 12 Harun Teper (TUD, WSU, Lamarr) 21 /27

ROS 2 Events Executor - Compatibility

O Release: o ® Execution:
Guaranteeing Priority queue Priority-based
periodic release scheduling
v v

technische universitat computer
-t_U dortmund G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 22 /27

ROS 2 Events Executor - Compatibility

O Release: o ® Execution:
Guaranteeing Priority queue Priority-based
periodic release scheduling
v v

— We can now apply classical scheduling theory to ROS 2!

e universitat computer
d : CS |2 science 12 Harun Teper (TUD, WSU, Lamarr)

22 /27

Evaluation

Experiments

@ Response time comparison (timer-only)
® End-to-end latency comparison (timer-only)

©® Autoware reference system performance (timer + subscription tasks)

Executors
(Static) Default Executor, Events Executor, Modified Events Executor (RM, EDF)

universitat G |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 23 /27

Evaluation: Response Time

Experimental Setup:

Timers Only, Uniprocessor

Utilization
- 0%
- 50%
- 0%

9 90

.
o P o« &

Executor

Response Time, IMU

......

® 10 periodic timer tasks (camera, LIDAR, IMU) 3
* Varying loads (30%, 60%, 90%)
® Metrics: Dropped jobs, response time,

deadline misses

“ “ Ll ﬂl

hn computer
dortmund. G |2 science 12 Harun Teper (TUD, WSU, Lamarr)

N
o

Executor

24 /27

Evaluation: Response Time

Experimental Setup:

® 10 periodic timer tasks (camera, LIDAR, IMU)
® Varying loads (30%,

60%,

90%)

® Metrics: Dropped jobs, response time,

deadline misses

Results

® No more dropped jobs

® No more deadline misses

s (G | @ Lomeuter,

Harun Teper

Drop Rate

Timers Only, Uniprocessor

"
o

Utilization
- 0%
- 50%
- 0%

9 90

P @,a‘\‘s o

Executor

Response Time, IMU

Y

......

Response Time (ms)

I

“ Ll ﬂl

(TUD, WSU, Lamarr)

N
o&“\

Executor

24 /27

Evaluation: End-to-End Latency

Normalized Reduction of End-to-End Latency

1500 ©
- o
Experimental Setup: £1000 s
S 8
¢ WATERS benchmark < 500 o
]

® Varying loads (30%, 60%, 90%) 9210 0 10 20 30 40 50 60 70 80 90 100
® Metric: End-to-end latency reduction 1300 @
between default and our executor £1000 s
© 500 E
. 5

0 -10 0 10 20 30 40 50 60 70 80 90 100
1500 N
o
€ 1000 g
[s} ©
© 500 <
5

0 .

-10 0 10 20 30 40 50 60 70 80 90 100
Normalized Reduction %

che universitat G |2 computer
nd science 12 Harun Teper (TUD, WSU, Lamarr) 25 /27

Evaluation: End-to-End Latency

Normalized Reduction of End-to-End Latency

1500

©
- o
Experimental Setup: £1000 s
S 8
® WATERS benchmark 500 <
=)

® Varying loads (30%, 60%, 90%) 9210 0 10 20 30 40 50 60 70 80 90 100
® Metric: End-to-end latency reduction 1500 @
between default and our executor £1000 s
© 500 E
Results o — >

-10 0 10 20 30 40 50 60 70 80 90 100

. ,
Latencies greatly reduced 1500 o
® Reductions up to 90% £1000 §
S g
500 =
5
0 i

-10 0 10 20 30 40 50 60 70 80 90 100
Normalized Reduction %

he universitat computer
d ’ G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 25 /27

Evaluation: Autoware Reference System

Experimental Setup:

° AUtOWa re refe rence SyStem Latency Summary 600s [FrontLidarDriver/RearLidarDriver -> ObjectCollision]

® Measurement of hot path -
® Metric: End-to-end latency N

Default Static Events RM

Latency (ms)
ES

3

technische universitat computer
hJ dortmond o G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 26 / 27

Evaluation: Autoware Reference System

Experimental Setup:

° AUtOWa re refe rence SyStem Latency Summary 600s [FrontLidarDriver/RearLidarDriver -> ObjectCollision]

® Measurement of hot path -
® Metric: End-to-end latency N
Results e
® [ower mean and variance » I

® Much lower maximum latencies 10

Latency (ms)
ES

3

Default Static Events RM

technische universitat computer
hJ dortmond o G |2 science 12 Harun Teper (TUD, WSU, Lamarr) 26 / 27

Conclusion

Bridged the gap between ROS 2 and classical scheduling theory

® Proposed modifications to enable timing guarantees in ROS 2

Enabled application of established analytical methods for ROS 2 systems

Provided tighter bounds on response times and end-to-end latencies

I computer
science 12 Harun Teper (TUD, WSU, Lamarr) 27 /27

