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Introduction - Robot Operating System 2

Motivation

00
® ROS 2 as middleware for robotics systems o000 R 2
[ N N ]

® Enables creation of modular systems

® Features real-time capabilities

Applications

® Autonomous vehicles
® |ndustrial robotics

® Safety-critical systems
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Introduction: Scheduling Comparison

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Executor

Established theory Limited theory
Deadline-driven Best effort

Fixed priority and dynamic priority Fixed priority

Periodic, sporadic tasks Sporadic tasks
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Introduction

Contributions
® Examine incompatibilities between ROS 2 and classical scheduling theory
® |ntroduce modifications to the executor to enable compatibility

® Evaluate modified executor to determine its performance

universitat G |2 computer
science 12 Harun Teper (TUD, WSU, Lamarr) 4 /27




Classical Real-Time Scheduling

Immediate release Scheduling policy
of ready jobs (EDF, RM)
Collection of
ready jobs
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Classical Real-Time Scheduling

Immediate release Scheduling policy
of ready jobs (EDF, RM)

Collection of
ready jobs

— Well-established analytical frameworks exist
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling

Onf m—
. T2 ’ ‘
O T3/\
0 5 10 15 20
t=16
@!dle QReady @Executing
Task | Period (P) | WCET (C) | Priority
71 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

6/ 27



Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Classical Real-Time Scheduling
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Classical Real-Time Scheduling
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Classical Real-Time Scheduling

Setting: Fixed-priority (rate-monotonic) non-preemptive scheduling
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Background: ROS 2 Default Executor

3 Processing !
Window |

Collects at most one Execution of all
job per ready task Ordered set jobs in the wait set
of ready jobs
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

N

B@ -

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

N

B0 ]

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)

=20 T1Aﬁ
2O -] |
O =]
0 t; 3 ‘ 1‘0 1‘5 2‘0 2‘5

@ Not activated (@ Activated

— Release --» Dropped release

@ Not in wait set@In wait set ) Executing -- Polling Point
Task | Period (P) | WCET (C) | Priority
1 10 3 1 (highest)
T2 30 10 2
73 30 10 3 (lowest)

I computer
science 12

Harun Teper

(TUD, WSU, Lamarr)

8 /27



ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (

non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (

non-preemptive, fixed priority)
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ROS 2 Default Executor

Setting: ROS 2 Default Executor (non-preemptive, fixed priority)
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Schedule comparison
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Schedule comparison
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Problem Statement

Can we utilize the ROS 2 ecosystem to enable
compatibility with classical real-time scheduling theory?
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ROS 2 Events Executor

FIFO queue
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ROS 2 Events Executor

Timers

Separation:
Handling release FIFO queue
in separate threads
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ROS 2 Events Executor

Separation: Granularity:
Handling release FIFO queue Execution of first
in separate threads job in the queue
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Enabling Compatibility with Classical Scheduling Theory

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Events Executor Default Executor

Established theory No theory Limited theory
Deadline-driven Best effort Best effort
Fixed priority and dynamic priority FIFO Fixed priority
Periodic, sporadic tasks Sporadic tasks Sporadic tasks
Preemptive and non-preemptive Non-preemptive Non preemptive
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Enabling Compatibility with Classical Scheduling Theory

Classical Real-Time Robot Operating
Scheduling System 2 (ROS 2)
Scheduler Events Executor Default Executor

Established theory i Established theory [ Limited theory

Y

Deadline-driven Deadline-driven Best effort

e
A

i

A

Fixed priority and dynamic priority Fixed and dyn. pr. Fixed priority

A

Periodic, sporadic tasks Periodic tasks Sporadic tasks

Can we utilize the ROS 2 Events Executor to enable
compatibility with classical real-time scheduling theory?

A
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ROS 2 Events Executor - Subproblems

@ How to guarantee periodic release?

® How to add priority-based scheduling?
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ROS 2 Events Executor

Timers

Events
queue

FIFO queue
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ROS 2 Events Executor

O Release:
Guaranteeing
periodic release
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ROS 2 Events Executor

Timers

Events
queue

O Release:
Guaranteeing FIFO queue
periodic release

Configurations

® Release-Execute: Separate thread for timer release AND execution

® Release-Only: Separate thread for timer release only
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ROS 2 Events Executor - Release-Execute Configuration

Timer Management Thread

Timers @ @

- Events @
DDS Threads \ “*“® /Default Thread
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ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg
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ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg Events Executor (Release-Execute)
gulinslis n | F
T2 Tzl\ N N
0123456789 0123456789
Task | Period (P) | WCET (C) | Priority
T 2 1 1 (highest)
T 4 2 2 (lowest)

No separation of timer release and execution
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ROS 2 Events Executor - Release-Execute Schedule

CIassncaI Schedulmg

bl

Events Executor (Release-Execute)

A A~ A T A

T2/ AN Tzl\ AN AN
0123456789 0123456789
Task | Period (P) | WCET (C) | Priority
T 2 1 1 (highest)
T 4 2 2 (lowest)

No separation of timer release and execution
—No guarantee of periodic release due to non-preemptive execution
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ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads
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ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution
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Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution
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ROS 2 Events Executor - Release-Only Configuration

Timer Management

Thread
Thread

Default Thread

DDS Threads

Separation of timer release and execution

Requirements

® Preemptive thread scheduling
® Prioritization of release threads over default thread
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ROS 2 Events Executor

Events
queue

@ Release:
Guaranteeing FIFO queue
periodic release
v
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ROS 2 Events Executor

Events
queue

@ Release: @® Execution:
Guaranteeing FIFO queue Priority-based
periodic release scheduling

v
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ROS 2 Events Executor - Priority-Based Scheduling

FIFO Queue

Push insert ——— 3 2 1 —— Pop
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ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert ——— 3 2 1 — Pop
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ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert ——— 3 2 1 — Pop

Prioritization

® Timers: Implicit priorities through periods
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ROS 2 Events Executor - Priority-Based Scheduling

Priority Queue

Priority insert —— 3 2 1 — Pop

Prioritization

® Timers: Implicit priorities through periods

® Subscriptions: No prioritization interfaces provided by ROS 2
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ROS 2 Events Executor - Priority-Based Scheduling

Proposal: Add universal priority field to ROS 2 tasks
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ROS 2 Events Executor - Subscription Prioritization

Modeling as Sporadic Tasks
— Each subscription gets a minimum inter-arrival time

>0
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ROS 2 Events Executor - Subscription Prioritization

Modeling as Sporadic Tasks
— Each subscription gets a minimum inter-arrival time

>0

Modeling as Limited Preemptive Tasks

— Subscriptions form processing chains

@ Subscription 7 Subscription 73

Non-preemptive Non-preemptive Non-preemptive

Preemption point Preemption point
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ROS 2 Events Executor - Compatibility

O Release: o ® Execution:
Guaranteeing Priority queue Priority-based
periodic release scheduling
v v
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ROS 2 Events Executor - Compatibility

O Release: o ® Execution:
Guaranteeing Priority queue Priority-based
periodic release scheduling
v v

— We can now apply classical scheduling theory to ROS 2!
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Evaluation

Experiments

@ Response time comparison (timer-only)
® End-to-end latency comparison (timer-only)

©® Autoware reference system performance (timer + subscription tasks)

Executors
(Static) Default Executor, Events Executor, Modified Events Executor (RM, EDF)
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Evaluation: Response Time

Experimental Setup:

Timers Only, Uniprocessor

Utilization
- 0%
- 50%
- 0%

9 90

.
o P o« &

Executor

Response Time, IMU

......

® 10 periodic timer tasks (camera, LIDAR, IMU) 3
* Varying loads (30%, 60%, 90%)
® Metrics: Dropped jobs, response time,

deadline misses
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Evaluation: Response Time

Experimental Setup:

® 10 periodic timer tasks (camera, LIDAR, IMU)
® Varying loads (30%,

60%,

90%)

® Metrics: Dropped jobs, response time,

deadline misses

Results

® No more dropped jobs

® No more deadline misses
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Harun Teper

Drop Rate
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Evaluation: End-to-End Latency

Normalized Reduction of End-to-End Latency
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Evaluation: Autoware Reference System

Experimental Setup:

° AUtOWa re refe rence SyStem Latency Summary 600s [FrontLidarDriver/RearLidarDriver -> ObjectCollision]

® Measurement of hot path -
® Metric: End-to-end latency N

Default Static Events RM
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Conclusion

Bridged the gap between ROS 2 and classical scheduling theory

® Proposed modifications to enable timing guarantees in ROS 2

Enabled application of established analytical methods for ROS 2 systems

Provided tighter bounds on response times and end-to-end latencies
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