Reconciling ROS 2 with Classical Real-Time Scheduling of Periodic Tasks

Harun Teper¹, Oren Bell², Mario Günzel¹, Chris Gill², Jian-Jia Chen^{1,3}

¹TU Dortmund University, Germany ²Washington University at St. Louis, USA ³Lamarr Institute, Germany

May 8, 2025

Partially supported by the German Federal Ministry of Education and Research (BMBF) and by the European Research Council (ERC).

Introduction - Robot Operating System 2

Motivation

- ROS 2 as middleware for robotics systems
- Enables creation of modular systems
- Features real-time capabilities

Applications

- Autonomous vehicles
- Industrial robotics
- Safety-critical systems

Introduction: Scheduling Comparison

Classical Real-Time
Scheduling
Scheduler

Established theory

Deadline-driven

Fixed priority and dynamic priority

Periodic, sporadic tasks

Preemptive and non-preemptive

Robot Operating
System 2 (ROS 2)

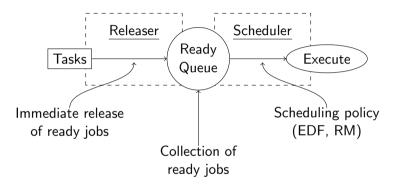
Executor

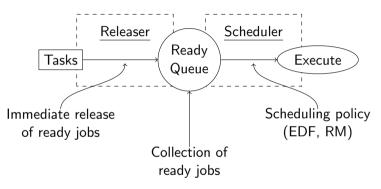
Limited theory

Best effort

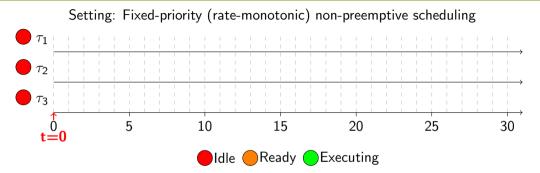
Fixed priority

Sporadic tasks

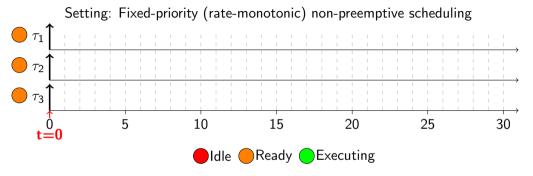

Non-preemptive



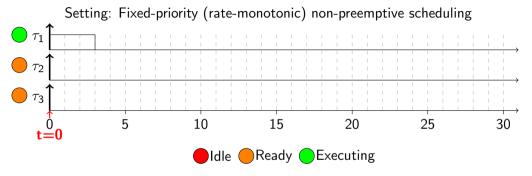
Introduction


Contributions

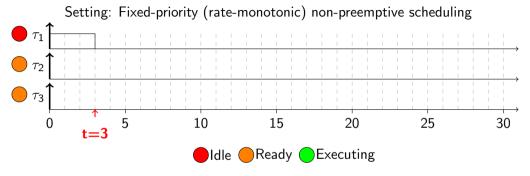
- Examine incompatibilities between ROS 2 and classical scheduling theory
- Introduce modifications to the executor to enable compatibility
- Evaluate modified executor to determine its performance

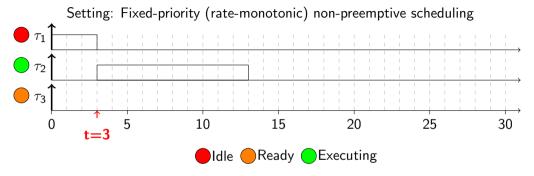


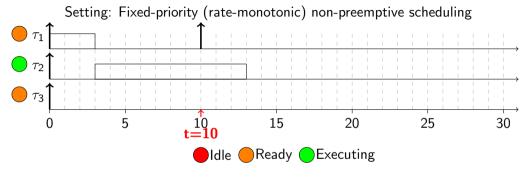
 $\rightarrow \mbox{Well-established analytical frameworks exist}$

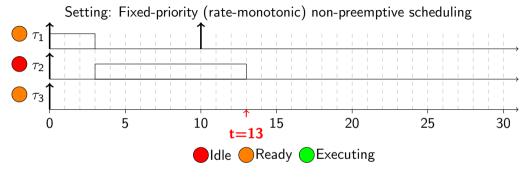


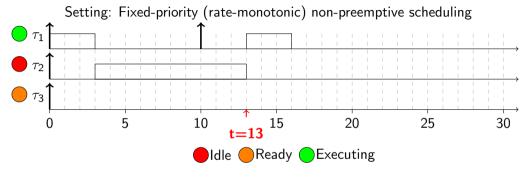
Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

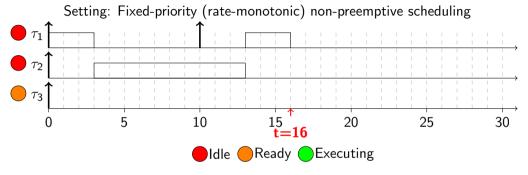

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

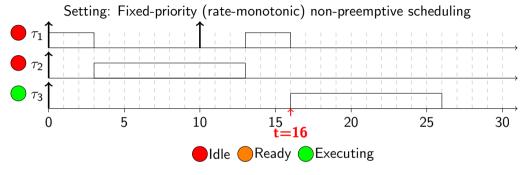

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

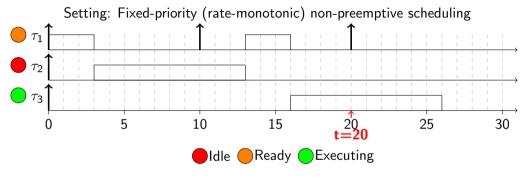

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

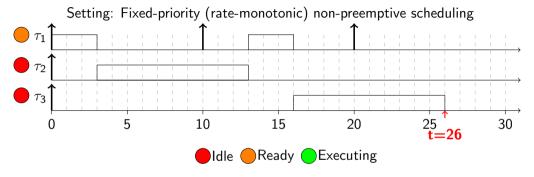

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

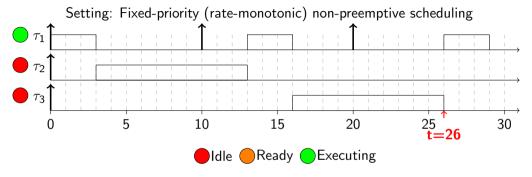

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

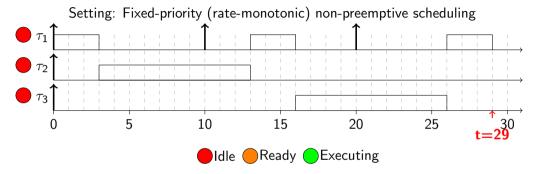

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

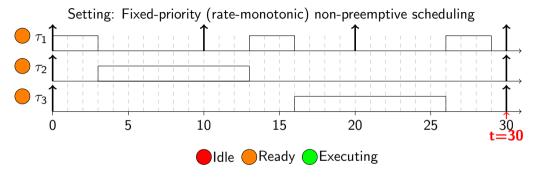

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

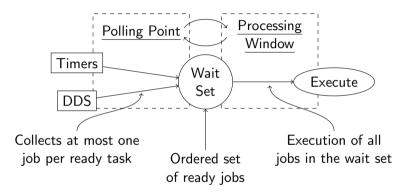


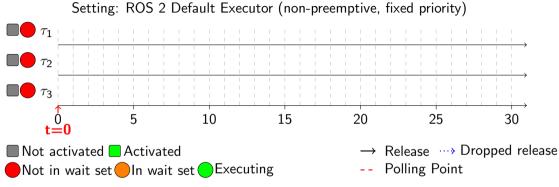
Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)



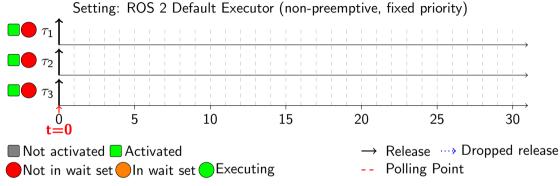
Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

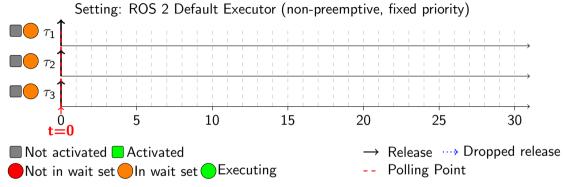


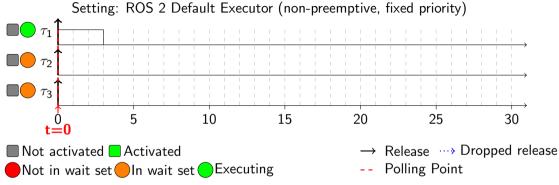


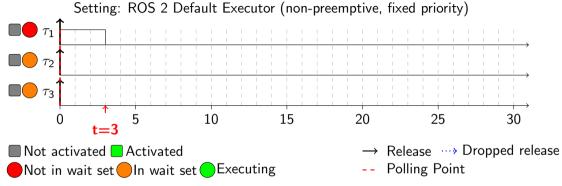
Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

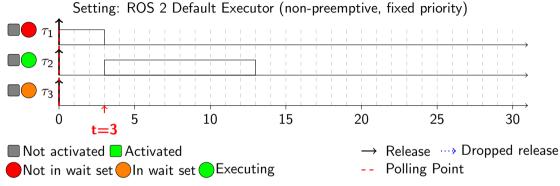


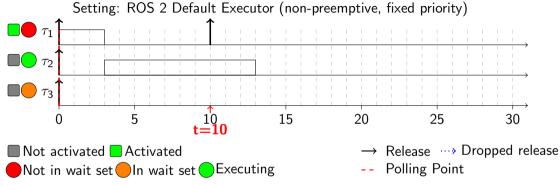
Background: ROS 2 Default Executor

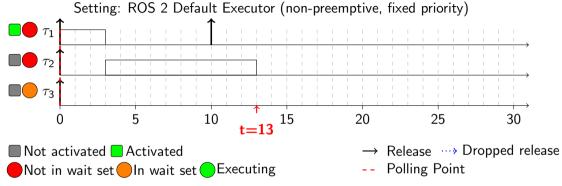


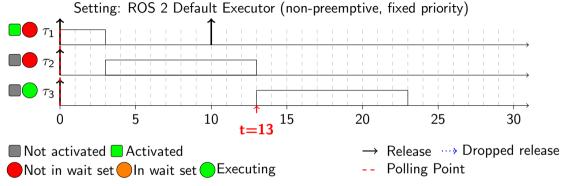

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

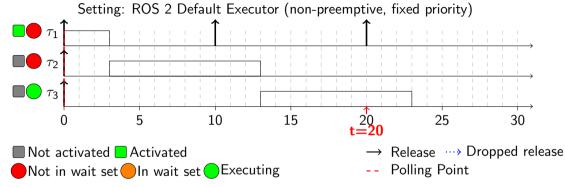

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

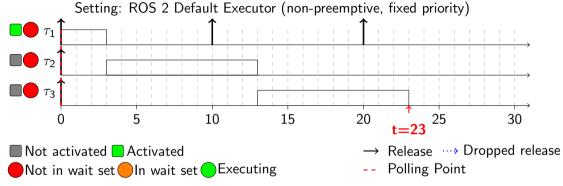

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

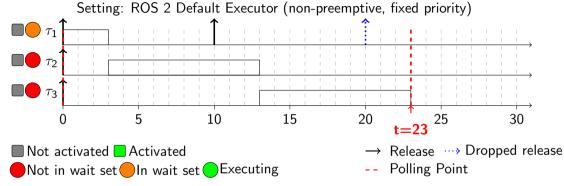

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

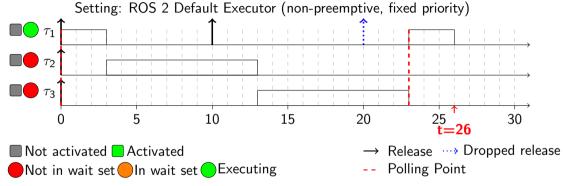

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

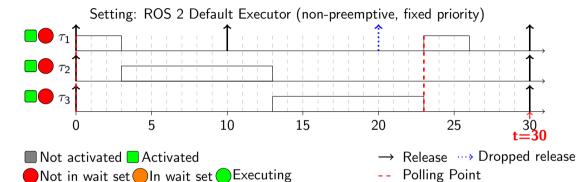

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

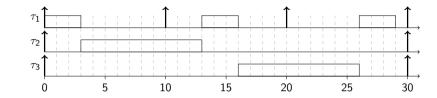

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

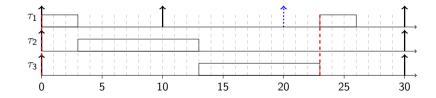

Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

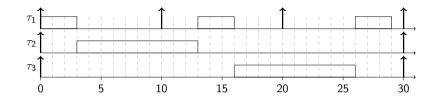
Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_1$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)


Task	Period (P)	WCET (C)	Priority
$ au_{1}$	10	3	1 (highest)
$ au_2$	30	10	2
$ au_3$	30	10	3 (lowest)

Schedule comparison

Classical Scheduling

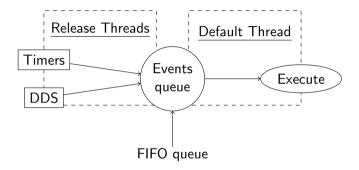


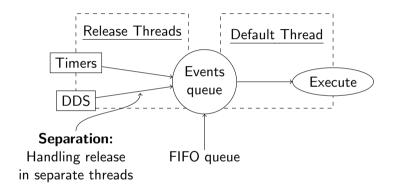
ROS 2 Default Executor

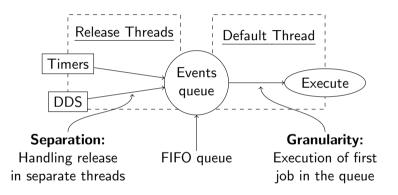


Schedule comparison

Classical Scheduling


ROS 2 Default Executor




Problem Statement

Can we utilize the ROS 2 ecosystem to enable compatibility with classical real-time scheduling theory?

Enabling Compatibility with Classical Scheduling Theory

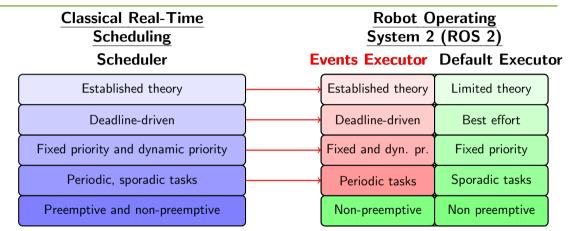
Classical Real-Time Scheduling Scheduler

Established theory

Deadline-driven

Fixed priority and dynamic priority

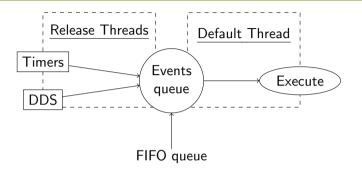
Periodic, sporadic tasks

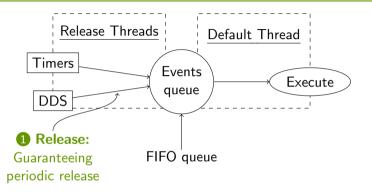

Preemptive and non-preemptive

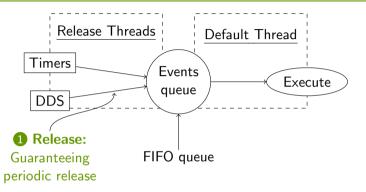
Robot Operating System 2 (ROS 2)

Events Executor Default Executor

No theory	Limited theory	
Best effort	Best effort	
FIFO	Fixed priority	
Sporadic tasks	Sporadic tasks	
Non-preemptive	Non preemptive	

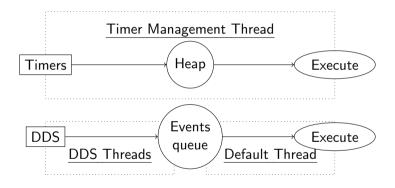

Enabling Compatibility with Classical Scheduling Theory

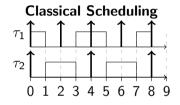



Can we utilize the ROS 2 Events Executor to enable compatibility with classical real-time scheduling theory?

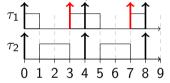
ROS 2 Events Executor - Subproblems

- How to guarantee periodic release?
- ② How to add priority-based scheduling?

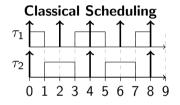


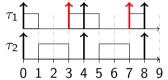

Configurations

- Release-Execute: Separate thread for timer release AND execution
- Release-Only: Separate thread for timer release only

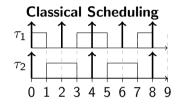

ROS 2 Events Executor - Release-Execute Configuration

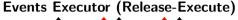
ROS 2 Events Executor - Release-Execute Schedule

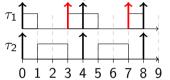

Events Executor (Release-Execute)


Task	Period (P)	WCET (C)	Priority
$ au_1$	2	1	1 (highest)
$ au_2$	4	2	2 (lowest)

ROS 2 Events Executor - Release-Execute Schedule

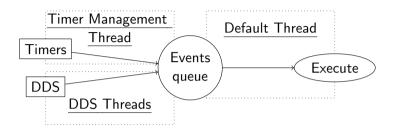

Events Executor (Release-Execute)

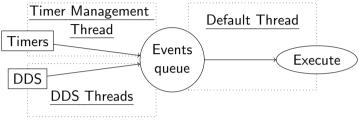



Task	Period (P)	WCET (C)	Priority
$ au_1$	2	1	1 (highest)
$ au_2$	4	2	2 (lowest)

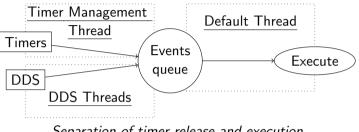
No separation of timer release and execution

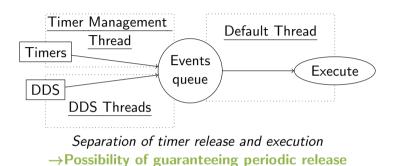
ROS 2 Events Executor - Release-Execute Schedule



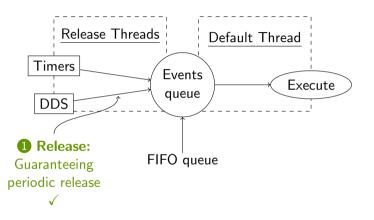

Task	Period (P)	WCET (C)	Priority
$ au_1$	2	1	1 (highest)
$ au_2$	4	2	2 (lowest)

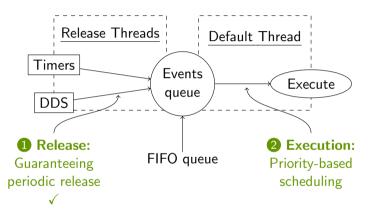
No separation of timer release and execution

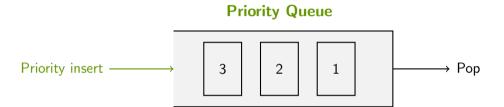

→No guarantee of periodic release due to non-preemptive execution

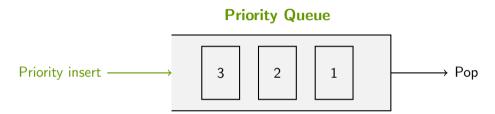

Separation of timer release and execution

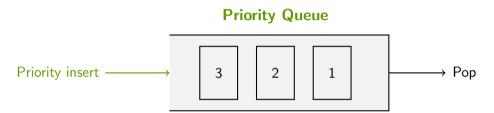
Separation of timer release and execution


 $\rightarrow \textbf{Possibility of guaranteeing periodic release}$




Requirements


- Preemptive thread scheduling
- Prioritization of release threads over default thread



Prioritization

• Timers: Implicit priorities through periods

Prioritization

- Timers: Implicit priorities through periods
- Subscriptions: No prioritization interfaces provided by ROS 2

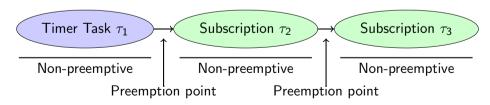
Proposal: Add universal priority field to ROS 2 tasks

ROS 2 Events Executor - Subscription Prioritization

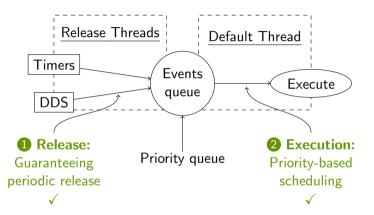
Modeling as Sporadic Tasks

 \rightarrow Each subscription gets a minimum inter-arrival time

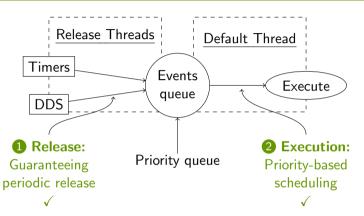
ROS 2 Events Executor - Subscription Prioritization


Modeling as Sporadic Tasks

 \rightarrow Each subscription gets a minimum inter-arrival time



Modeling as Limited Preemptive Tasks


→ Subscriptions form processing chains

ROS 2 Events Executor - Compatibility

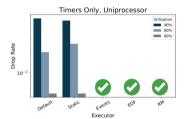
ROS 2 Events Executor - Compatibility

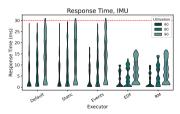
→ We can now apply classical scheduling theory to ROS 2!

Evaluation

Experiments

- Response time comparison (timer-only)
- 2 End-to-end latency comparison (timer-only)
- **3** Autoware reference system performance (timer + subscription tasks)

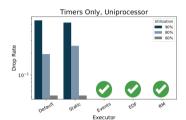

Executors

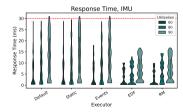

(Static) Default Executor, Events Executor, Modified Events Executor (RM, EDF)

Evaluation: Response Time

Experimental Setup:

- 10 periodic timer tasks (camera, LIDAR, IMU)
- Varying loads (30%, 60%, 90%)
- Metrics: Dropped jobs, response time, deadline misses

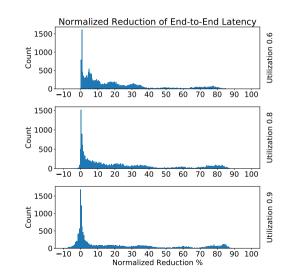

Evaluation: Response Time


Experimental Setup:

- 10 periodic timer tasks (camera, LIDAR, IMU)
- Varying loads (30%, 60%, 90%)
- Metrics: Dropped jobs, response time, deadline misses

Results

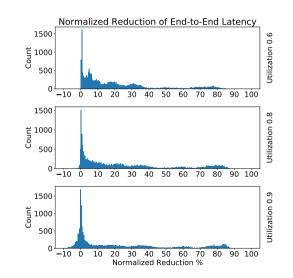
- No more dropped jobs
- No more deadline misses



Evaluation: End-to-End Latency

Experimental Setup:

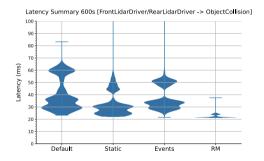
- WATERS benchmark
- Varying loads (30%, 60%, 90%)
- Metric: End-to-end latency reduction between default and our executor


Evaluation: End-to-End Latency

Experimental Setup:

- WATERS benchmark
- Varying loads (30%, 60%, 90%)
- Metric: End-to-end latency reduction between default and our executor

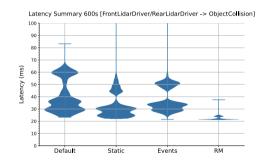
Results


- Latencies greatly reduced
- Reductions up to 90%

Evaluation: Autoware Reference System

Experimental Setup:

- Autoware reference system
- Measurement of hot path
- Metric: End-to-end latency


Evaluation: Autoware Reference System

Experimental Setup:

- Autoware reference system
- Measurement of hot path
- Metric: End-to-end latency

Results

- Lower mean and variance
- Much lower maximum latencies

Conclusion

- Bridged the gap between ROS 2 and classical scheduling theory
- Proposed modifications to enable timing guarantees in ROS 2
- Enabled application of established analytical methods for ROS 2 systems
- Provided tighter bounds on response times and end-to-end latencies