
Reconciling ROS 2 with Classical Real-Time
Scheduling of Periodic Tasks

Harun Teper∗, Oren Bell†, Mario Günzel∗, Chris Gill† and Jian-Jia Chen∗‡
∗TU Dortmund University, Germany, †Washington University at St. Louis, USA ‡Lamarr Institute, Germany

{harun.teper, mario.guenzel, jian-jia.chen}@tu-dortmund.de, {oren.bell, cdgill}@wustl.edu

Abstract—The Robot Operating System 2 (ROS 2) is a
widely used middleware that provides software libraries and
tools for developing robotic systems. In these systems, tasks are
scheduled by ROS 2 executors. Since the scheduling behavior of
the default ROS 2 executor is inherently different from classical
real-time scheduling theory, dedicated analyses or alternative
executors requiring substantial changes to ROS 2 have been
developed.

In 2023, the events executor was introduced into ROS 2. It
features an events queue and allows the possibility to make
scheduling decisions immediately after a job is completed. In
this paper, we show that with minor modifications of the events
executor, a large body of research results from classical real-
time scheduling theory becomes directly applicable to ROS 2.
This enables analytical bounds on the worst-case response
time and the end-to-end latency, outperforming bounds for the
default ROS 2 executor in many scenarios. Our solution is easy
to integrate into existing ROS 2 systems since it requires only
minor modifications of the events executor, which is natively
included in ROS 2. The evaluation results show that our ROS 2
events executor with minor modifications can have significant
improvement in terms of dropped jobs, worst-case response
time, end-to-end latency, and performance compared to the
default ROS 2 executor.

Index Terms—Robot Operating System 2 (ROS 2), Priority-
Based Executor Scheduling, Compatibility with Classical Real-
Time Scheduling Theory

I. Introduction
The Robot Operating System 2 (ROS 2) is a widely used

middleware for creating robotics applications. It provides
tools and libraries to build modular systems with many
interacting components. In comparison to the original
Robot Operating System (ROS), it offers opportunities to
configure real-time properties through its use of the Data
Distribution Services (DDS) for real-time communication
and its custom scheduling abstraction, called an executor,
that manages the execution of time-triggered and event-
triggered tasks.

The default scheduling mechanism in ROS 2 relies on
polling points and processing windows. That is, at each
polling point, jobs that are eligible for execution are moved
to a wait set, followed by a processing window in which
the jobs in the wait set are scheduled non-preemptively by
a predefined priority order. Due to this round-robin-like
approach, even tasks with high priority may experience
long blocking times. That is, a high-priority task may
be blocked for the length of a full processing window—
including the execution time of every lower-priority task.

Moreover, the implementation of ROS 2 only releases one
job of a task, even if the task period has been reached
several times during one processing window.

There have been several dedicated analyses for the
default ROS 2 executor [6], [8], [34], [36], [38]. To mitigate
the potentially long response times of the ROS 2 default
executor, alternative executor designs have been pro-
posed for both fixed-priority schedulers [10] and dynamic-
priority schedulers [1].

In 2023, the events executor [23] was introduced in
ROS 2, replacing the wait set with an events queue and
passing only one job to the processing window at a time.
This paper addresses the following fundamental question:

Is it possible to use the events executor in
ROS 2 in a manner that is compatible with the
classical real-time scheduling theory of periodic
task systems, in which every high-priority task
can only be blocked by at most one lower-priority
task, and a job is released every time the task
period is reached?

Our answer is yes, but only under certain conditions.
In this paper, we uncover these conditions and show that

any priority-based, non-preemptive scheduling strategy,
with slight modifications of the events executor, can
be realized, including Fixed-Priority (FP) and Earliest-
Deadline-First (EDF) scheduling. Our solution is easy to
apply since it requires only minor backend modifications
of the events executor, which is natively included in
ROS 2. With our solution, classical results from the real-
time systems literature for priority-based, non-preemptive
scheduling of periodic tasks can be applied.
Our Contributions: The contributions of this paper are:

• We present modifications to allow priority-based
scheduling for the events executor in Section V.

• We state the conditions that make our pro-
posed executor compatible with priority-based, non-
preemptive scheduling theory for periodic tasks in
Section VI. Furthermore, we demonstrate how to
apply analytical results in the literature to compute
the worst-case response time and the end-to-end
latency for the proposed ROS 2 scheduler.

• While the previous sections focus on timer tasks (i.e.,
tasks with periods), we extend to subscription tasks
(i.e., tasks triggered by other tasks) in Section VII and



discuss the need for dedicated interfaces enabling the
prioritization of subscriptions in ROS 2.

• In Section VIII, we evaluate our findings, showing our
compatibility with the classical real-time scheduling
theory and our proposal’s benefits. We show the ap-
plicability of response-time bounds from the literature
and significant improvements to end-to-end latencies
in many cases.

In Section II, we outline the different characteristics of
typical priority-based schedulers and the default ROS 2
executor. The events executor is introduced in Section III.
We define the problem this paper investigates in Sec-
tion IV.

II. Classical Schedulers and Executors in ROS 2
In this section, we introduce the scheduling mechanisms

of periodic tasks in classical real-time scheduling and the
default ROS 2 executor and highlight their differences. To
that end, we use a running example of three tasks τ1, τ2
and τ3. Task τ1 should release a job every 10 time units,
with an execution time of 3 time units. Tasks τ2 and τ3
should release a job every 30 time units, with an execution
time of 10 time units.

A. Classical Priority-Based Scheduler
The scheduling mechanism of the classical real-time

scheduler is depicted in Figure 1a. Specifically, it consists
of a releaser1 and a scheduler, where the releaser inserts
jobs into the ready queue and the scheduler decides which
job in the ready queue should be executed.

The releaser can be implemented as a timer interrupt
service routine. Specifically, a timer interrupt is triggered
for each system tick, and the releaser decides whether
to release a job of task τi ∈ T, given a set T of
tasks. A periodic task τi ∈ T is specified by the tuple
τi = (Ci, Ti, Di, φi) ∈ R4, where Ci ≥ 0 represents the
worst-case execution time (WCET), Ti > 0 defines the
period, Di > 0 is the relative deadline, and φi is the
phase. The periodic task τi releases its first job at time φi

and subsequent jobs are released every Ti time units. It
is usually assumed that Ti is an integer multiple of the
system tick for every task τi ∈ T. Jobs must finish within
their relative deadline Di after their release time.

A scheduler determines which job in the ready queue
should be executed. Priority-based schedulers, in which
scheduling decisions are made by assigning priorities to
jobs, have been widely studied in the literature. At any
point in time when a scheduling decision has to be made,
the highest-priority job among the jobs in the ready queue
is allocated to the processor for execution. When a job
completes its execution, it is removed from the ready

1We use the term releaser to indicate an independent component
of a system that is responsible for determining if and when a job
should be released. Its role is distinct from that of the scheduler,
which decides which of the released jobs should be running at any
point in time.
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Fig. 1: Scheduling mechanisms.

queue. Every job of τi executes for at most Ci time units
and has an absolute deadline specified as its release time
plus the relative deadline. A task set is an implicit-deadline
system if Di = Ti for all tasks τi ∈ T, and a constrained-
deadline system if Di ≤ Ti for all tasks τi ∈ T. If the
deadline is not constrained by the period, i.e., Di > Ti

is allowed, then we call the task set an arbitrary-deadline
system. We consider arbitrary-deadline task systems in
this paper, covering all possible cases.

In the literature, priority-based schedulers (on the
task level) are classified into fixed-priority and dynamic-
priority schedulers. A scheduler is a fixed-priority sched-
uler if, for any two tasks τi and τj , either all jobs of τi
have higher priority than all jobs of τj or all jobs of τj
have higher priority than all jobs of τi. In contrast, for
dynamic-priority scheduling, a job of τi may have a higher
priority than some jobs of τj but a lower priority than
other jobs of τj . Specifically, the rate-monotonic (RM)
scheduler (where a task with a shorter period has a higher
priority) and deadline-monotonic (DM) scheduler (where a
task with a smaller relative deadline has a higher priority)
are well-known fixed-priority scheduling policies, while the
earliest-deadline-first (EDF) scheduler (where a job with
the earliest absolute deadline has the highest priority) is
a well-known dynamic-priority scheduling policy [30].

Furthermore, we differentiate between preemptive and
non-preemptive scheduling algorithms. That is, while for
preemptive scheduling a scheduling decision is made at
every timer interrupt, for non-preemptive scheduling,
decisions are only made at a few specific checkpoints of job



execution. More specifically, in preemptive scheduling, at
every timer interrupt, it is checked whether the currently
running job is still the highest-priority job in the ready
queue, and if so, it continues executing. Otherwise, the
system performs a context switch, preempts the currently
executing job, and executes the new highest-priority job
in the ready queue instead. On the other hand, for non-
preemptive scheduling, a scheduling decision is only made
when (i) a running job finishes its execution or (ii) a
job is inserted into an empty ready queue. Since the
scheduler can make a scheduling decision to start the
execution of the highest-priority job in the ready queue
only at those time points, a running job is never preempted
and continues to be executed until it finishes. Worst-
case analysis of non-preemptive schedulers for real-time
systems has been widely studied, e.g. [12], [13], [15], [24],
[31].
Example 1. We consider the running example from the
beginning of Section II with three tasks. Specifically,
we model them as periodic tasks with implicit dead-
lines, i.e., τ1 = (3, 10, 10, 0), τ2 = (10, 30, 30, 0), and
τ3 = (10, 30, 30, 0). Under RM scheduling, task τ1 has
the highest priority. The schedule for RM non-preemptive
scheduling is depicted in Figure 2a. In particular, we
observe that at time 10, task τ1 is placed in the ready
queue directly by the releaser. At time 13, the scheduler
makes a new scheduling decision, identifies the second job
of task τ1 as the highest-priority job, and schedules it.
Most importantly, all tasks are released periodically, and
the task prioritization and job selection of the scheduler
lead to a schedule where all tasks meet their specified
deadline.

B. Default Executor in ROS 2
The default single-threaded ROS 2 executor is depicted

in Figure 1b. It schedules tasks’ eligible jobs using a
wait set. Its scheduling mechanism is split up into two
alternating phases, the polling point and the processing
window, which are performed sequentially in one thread.

The polling point functions like the releaser in classical
real-time scheduling. At each polling point, the executor
updates the wait set by sampling one job from each
activated task. In ROS 2, tasks are typically either timer
tasks or subscription tasks. Timer tasks are time-triggered
and activated every Period Ti, while subscription tasks are
event-triggered and activated indirectly through message
reception. Tasks can publish messages through the com-
munication middleware of ROS 2, the Data Distribution
Service (DDS).

During each processing window, which is equivalent to
the scheduler in classical real-time scheduling, the jobs are
executed using a fixed-priority non-preemptive scheduling
policy. The executor iterates over the wait set and selects
the highest-priority job according to the fixed-priority
order of their respective tasks. The executor then executes
the job non-preemptively by calling a function (callback)

associated with the task. After finishing the execution of
all jobs in the wait set, the wait set is empty, and the
executor starts a new polling point. The default ROS 2
executor prioritizes timers over subscriptions, and tasks of
the same type are prioritized according to their order of
creation. Specifically, ROS 2 does not provide any direct
interfaces to configure task priorities.

In general, the design of the ROS 2 scheduling mecha-
nism ensures that no matter how many tasks are part of
the system, all of them will be executed at some point.
This approach simplifies development, as developers do
not need to analyze whether all tasks are guaranteed to
execute. However, this design comes at the cost of strict
timing requirements, such as ensuring the periodic release
of timer tasks.

For the release of tasks in ROS 2, there is no timer
interrupt that checks the eligibility of tasks at every sys-
tem tick. Instead, jobs are released only at polling points,
regardless of the time elapsed since the last polling point
during the preceding processing window. This reduces the
flexibility of the schedule since fewer scheduling decisions
are made. Furthermore, to guarantee the periodic release
of timers, the processing window length must be less than
the period of all timer tasks.

However, the ROS 2 executor is designed to execute all
tasks at some point for any system configuration, even
when the processing window may be longer than the
period of a timer task. For this, it provides a flexible
mechanism to track and perform the release of timers.
Each timer has a timestamp2, which is used to determine
the eligibility of the timer for release. At each polling
point, the executor checks if the current time is greater
than or equal to the timestamp of the timer. If so, a
job of that timer is sampled and added to the wait set.
Then, during the following processing window, when the
timer job is selected for execution from the wait set (the
start time of the timer job), the timer’s timestamp is
updated. To update the timestamp, it is increased by the
minimal multiple of the period such that it is greater
than the current time. As a result, the executor may
increase the timestamp of the timer by a multiple of
the period, skipping a timer job if the time between the
previous timestamp and the start time of the next timer
job is longer than the period of the timer. This design,
while being flexible, may skip timer jobs, contrary to the
expectation of a periodic release of timers.
Example 2. Again, we consider the running example from
the beginning of Section II with three tasks. Since the
tasks are time-triggered, we implement them as timer
tasks with periods 10 for τ1 and 30 for τ2 and τ3. The
schedule obtained using the default ROS 2 executor is
depicted in Figure 2b. In particular, the first polling point
at time 0 samples a job of each timer task and puts them

2The timestamp refers to the activation time variable of the ROS 2
codebase in the C++ client library rclcpp.
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Fig. 2: Schedules for the running example of Section II.

to the wait set. During execution of the first job of τ1,
the timestamp of τ1 is updated to time 10. Only when
the processing window finishes (at time 23), during the
polling point, the executor collects the second job of τ1
and moves it to the wait set. In the subsequent processing
window, the timestamp of τ1 is updated to 30—skipping
the timestamp 20. While all jobs are executed at some
point after activation, the timer jobs are not released at
their specified periods.

Dedicated response-time analyses have been developed
for the default ROS 2 executor [6], [8], [34], along with
suggestions to optimize the ROS 2 application code to
mitigate long response times [34]. Casini et al. [8] also
introduced the concept of processing chains, in which
tasks may be triggered due to the arrival of data and
output a result, triggering other tasks. This propagation
of data creates a natural structure of chained tasks that
can be used to measure the end-to-end latency of the
task set. Specifically, Teper et al. have analyzed [35],
[38] and optimized [36] such end-to-end latencies in the
ROS 2 single-threaded executor. Multi-threaded executors
have been developed and analyzed [25], [29], [33], but
these are still constrained by the wait set behavior of the
default executor. Their implementation either shares the
wait set among threads in a thread pool or runs multiple
unmodified executors in different threads. The latter
approach also requires the manual assignment of nodes to
executors. Furthermore, the multi-threaded variant of the
default executor is shown to be affected by starvation [39],
i.e., it does not even ensure that all tasks will be executed
at some point after activation.

C. Comparison of Schedulers
We now compare the classical non-preemptive priority-

based scheduler from Section II-A with the default execu-
tor in ROS 2 from Section II-B.

First, the release mechanism in ROS 2 is substantially
different from the typical release mechanism in classical
real-time systems. That is, in classical real-time systems,
jobs are released (almost) immediately by the timer inter-
rupt. Contrarily, in ROS 2, activated tasks are passively
sampled by the executor at polling points. Specifically,
timers are not released every time their period elapses, but

only when the executor samples them at the polling point,
potentially causing delays in the release of jobs. Combined
with the timestamp update mechanism, this can lead to
the skipping of timer jobs for ROS 2, as jobs may not be
sampled every period. This is depicted in Figure 2b, where
a job of τ1 for timestamp 20 is skipped. In contrast, the
same task set under the classical scheduler with implicit
deadlines would release all jobs at their specified periods,
and no task would miss its deadline.

Secondly, the scheduling mechanism and the resulting
delays in ROS 2 differ from the classical non-preemptive
fixed-priority scheduler. In a classical non-preemptive FP
scheduler, high-priority jobs can only be blocked by one
lower-priority job, as a new scheduling decision is made
every time a job finishes. We can see this in Figure 2a,
where the second job of task τ1 is blocked by only one job,
the job of τ2, and the response time of τ1 is 6. On the other
hand, in ROS 2, scheduling decisions can only be made at
the polling points. That is, only once all the remaining jobs
in the current processing window have finished execution,
including potentially all lower-priority jobs, new jobs are
added to the wait set. This case is depicted in Figure 2b
where the second job of τ1 is blocked by both the jobs of
τ2 and τ3 during [10, 23], leading to a response time of 16.
This may lead to higher response times for tasks in ROS 2
compared to the classical non-preemptive FP scheduler.

Thirdly, ROS 2 does not allow for the explicit setting
of timing properties, such as deadlines, or the direct
control of the priority of tasks to influence the scheduling
order. Instead, ROS 2 enables developers to focus on the
application logic and the communication between nodes,
while the underlying scheduling mechanism ensures that
all tasks are executed at some point after activation, even
if the timing requirements, such as the timer periods, are
not met.

Due to these substantial differences between the clas-
sical non-preemptive scheduler and the ROS 2 default
scheduler, the rich literature of real-time scheduling theory
is not directly applicable to ROS 2 systems. Therefore,
alternative executors for fixed-priority [10] or dynamic-
priority [1] schedulers have been developed. However,
using executors provided directly by ROS 2 for periodic
task systems is still desirable to reduce design and imple-



mentation costs for developers.

III. The Events Executor
In 2023, ROS 2 added the events executor to its

distribution [23], providing an alternative to the default
executor. It does not use a wait set but instead uses a
FIFO queue, called an events queue, that stores the jobs
of tasks that are eligible for execution. Furthermore, it uses
separate threads for releasing jobs to the events queue and
for scheduling jobs from the events queue. Specifically, we
have a timer management thread, DDS threads, and the
default thread. The mechanism of the events executor is
depicted in Figure 1c.

The default thread is responsible for scheduling the jobs
in the events queue. It does not release jobs, but only
executes the jobs in the events queue in a FIFO order.
Non-timer tasks are released by the DDS threads into the
events queue. The release of non-timer tasks occurs when
the DDS threads receive events, such as the arrival of a
message. Specifically, the DDS threads enqueue the events
in the events queue as part of the operation that receives
messages. For timer tasks, the timer management thread
manages a timer release queue, and there are two options:

• Option 1: Release-Only (denoted as RO). The timer
management thread releases the timer jobs from the
timer release queue to the events queue (where non-
timer events also reside), and all jobs are scheduled
by the default thread in FIFO order.

• Option 2: Release-and-Execute (denoted as RE). The
timer management thread holds both released and
unreleased timer jobs in its timer release queue and
schedules them based on their timestamp.

Therefore, for the RO option, the timer management
thread only releases the timer jobs to the events queue,
while for the RE option, the timer management thread
both releases and schedules the timer jobs.

Algorithm 1 summarizes the implementation of the
timer management thread in ROS 2. First, in Lines 2-
3, the timer management thread determines the time to
sleep until the next timer release time and then waits until
that time elapses. For each release, in Lines 4–5, the timer
management thread first determines if the timestamp of
the head timer has been reached. When the timer is
released, its timestamp is updated to the next timestamp
in Line 6, which is the smallest multiple of the period that
is greater than the current time. Then, for the RO option,
the timer job is released into the events queue in Line 8.
Likewise, for the RE option, the timer job is immediately
scheduled in Line 10. Afterward, in Line 12, the queue is
reordered according to the new timestamps of the timers
that remain in the queue.

The events executor has two properties that make it a
potentially suitable option to bridge the gap between ROS
2 and classical real-time scheduling:

1) Separation: Different threads can be used to separate
the execution and release of tasks. Specifically, as

Algorithm 1 Timer Management Thread in Events Execu-
tor

1: while Running do
2: time_to_sleep ← next timer release time - now
3: wait_for(time_to_sleep)
4: head_timer ← timers.front()
5: while head_timer is eligible do
6: head_timer.update_timestamp()
7: if Option RO is configured then
8: events_queue.enqueue(head_timer , data)
9: else if Option RE is configured then

10: execute(head_timer , data)
11: end if
12: Reorder timers by release time
13: head_timer ← timers.front()
14: end while
15: end while

depicted in Figure 1c, the timer management thread
and the DDS threads can be used to release jobs to
the events queue, while the default thread handles the
job execution. This is similar to the mechanism of the
classical real-time scheduler, depicted in Figure 1a,
where the releaser and the scheduler are separated as
the releaser inserts jobs into the ready queue when
they are ready and the scheduler takes ready jobs out
of the ready queue for execution.

2) Granularity: Compared to the polling point in the
default ROS 2 scheduler, depicted in Figure 1b, where
all jobs are collected during the polling point for
execution, the events executor always collects only
one job for execution (either from the events queue
or from the set of active timers). Therefore, this
leads to a higher granularity of scheduling decisions,
potentially allowing to reduce the blocking from
lower-priority jobs.

IV. Problem Definition
As we have discussed in Section II-B, the default

executor of ROS 2 is not compatible with typical liter-
ature results on real-time systems. That is, the default
executor shows behavior that is typically not considered
when looking at typical priority-based schedulers. More
specifically, classical priority-based schedulers have the
following properties:
P1) Each job is inserted into the ready queue (almost)

immediately by the releaser.
P2) Each scheduling decision determines only one job to

be executed next.
Contrarily, for the default scheduler of ROS 2 we have:

1) A job is inserted into a wait set only at polling points
and only if the corresponding task has been activated
since its preceding execution.

2) At the polling point, the scheduler makes the schedul-
ing decision to run all jobs in the wait set in
a deterministic order and does not make another
scheduling decision until the next polling point.



As a direct consequence, the default ROS 2 scheduler
shows behavior that usually cannot occur in typical
priority-based schedulers. For example, a job release can
be skipped, and a high-priority task can be blocked by all
lower-priority tasks. Therefore, the literature on classical
real-time systems theory is not directly applicable to ROS
2.

In this paper, we address the problem:
How can the results from classical real-time
systems be made applicable to ROS 2?

To investigate this, we consider the events executor of
ROS 2, which exhibits properties that are closer to
traditional real-time scheduling mechanisms, making it
a promising candidate for bridging the gap between
these two models. To that end, we focus on timer tasks
first, present our proposed scheduler based on the events
executor in Section V, and discuss the compatibility with
the literature on non-preemptive schedulers for periodic
tasks in Section VI. Afterward, we discuss extensions of
our results to ROS 2 applications with subscription tasks
in Section VII.

V. Proposed Scheduler

In this section, we present our proposed scheduler. In
particular, we discuss the necessary configuration and
modification of the events executor to ensure the same
behavior as a classical priority-based, non-preemptive real-
time scheduler.

As discussed in Section III, the events executor has
a finer scheduling granularity than the default ROS 2
executor. In particular, a new scheduling decision is
made when a job finishes execution. Therefore, the events
executor inherently fulfills property P2) from the problem
definition. The remainder of this section is divided into
two parts: First, we discuss the configuration to ensure
immediate job releases, i.e., P1). Second, we detail the
modifications to model different priority-based scheduling
algorithms like RM, DM, or EDF.

A. Ensure Immediate Releases
To ensure immediate releases, we need to ensure that

the release functionality is decoupled from the execution
functionality and that the execution cannot block job
releases. We achieve this by proper configuration of the
RO/RE option and by proper prioritization of the threads.

a) Choice of RO/RE Option: As discussed in Sec-
tion III, there are two options for the events executor:
the Release-Only (RO) and the Release-and-Execute (RE)
option.

The RE option does not separate the releaser and
scheduler for timers. In this case, job releases are only
performed between job executions. This can lead to timer
jobs being lost if the execution time of a timer job exceeds
the period of other timers. Due to these delays, the RE
option is not suitable to ensure immediate job releases.

However, the RO option separates the releaser and
scheduler for timers. Just like the classical real-time
scheduler, this allows job releases to be handled without
being blocked by job execution. Specifically, timer jobs can
be released into the events queue while the default thread
executes jobs. Furthermore, job releases and timestamp
updates are independent of the scheduling decisions made
by the default thread. Therefore, to achieve P1), we choose
the RO option.

b) Thread Management: To achieve P1), we need
to ensure that the release of jobs is guaranteed even
while a job is executed. For this, we need to rely on the
assumption that the operating system allows scheduling
threads preemptively, meaning that the operating system
can interrupt the execution of a thread at any time.
Furthermore, we need to assume that threads can be
prioritized if they run on the same processing core, i.e., if
a lower-priority thread is executing, the operating system
can preempt it in favor of a higher-priority thread.

If the threads run on different processing cores, the
operating system can schedule them independently, and
the threads can run concurrently. However, the threads
share a common data structure in the events queue, and
access to the data structure needs to be synchronized.
Therefore, the only interference when releasing jobs occurs
during access to the events queue. We consider such
blocking times as part of the job release overhead and
can thus be ignored. Therefore, the timer management
thread can release jobs almost immediately, even if the
default thread is executing jobs.

If the threads share the same processing core, the
priority of the threads is crucial. To ensure jobs are
released (almost) immediately, the timer management
thread and the DDS threads are configured to have a
higher priority than the default thread. In this case,
the timer management thread and the DDS threads can
preempt the default thread when it is executing a job,
releasing the timer jobs (almost) immediately. Otherwise,
if, for example, the default thread has a higher priority
than the timer management thread, a long job execution
by the default thread may delay the release of a timer
job, potentially skipping it. Again, overheads caused by
the operating system and for accessing the events queue
are considered part of the job release overhead and are
ignored.

B. Job Prioritization
Although the configuration of the previous subsection

achieves P1) and P2), the job execution order in the events
queue remains FIFO. Specifically, we consider the running
example of three tasks, as specified in Example 2 for the
ROS 2 architecture. The schedule is depicted in Figure 2c.
While no job releases are skipped and scheduling decisions
occur after every job, the schedule differs from the schedule
under classical non-preemptive FP scheduling, depicted in
Figure 2a. Specifically, while the second job of τ1 is added



to the events queue at time 10, the job is only started at
time 23 because the jobs are executed in a FIFO order.
Assuming implicit deadlines, this would lead to a missed
deadline for τ1. Under the classical non-preemptive FP
scheduling (Figure 2a), the second job of τ1 is added to
the ready queue at time 10 as well, but started already
at time 13, because it has higher priority than the job of
τ3. To achieve the same schedule, we need to handle the
priority ordering of the events queue.

For this, we change the events queue to a priority
queue instead of a FIFO queue. The highest-priority job
can then be selected by extracting the first job from the
priority queue. The priority queue only adds an overhead
of O(log n) for each priority insert, where n is the number
of tasks in the system. For priority-based reordering,
the overhead is O(n log n). This overhead is inherent to
priority-based management, unless special assumptions
or mechanisms are introduced to avoid it. However, the
overall overhead is negligible compared to that of the other
ROS 2 management routines.

For sorting the events queue in ROS 2, we additionally
require information about the priority of the jobs. By
default, ROS 2 does not provide a priority field for tasks.
In the following, we discuss two options to provide the
priority of the timer jobs, with different levels of user
interaction required. We focus on RM and EDF scheduling
of timer tasks. Possible extensions for subscription tasks
can be found in Section VII.

The first option uses each timer’s period as its priority.
Each timer task already provides a period, required when
creating the timer. Thus, this information can be used
during scheduling to prioritize the timer jobs in the events
queue. For RM scheduling, the timer job with the smallest
period has the highest priority. Therefore, when inserting
a timer job into the events queue, the queue can access the
period of the timer and insert the job based on the period.
For implicit-deadline EDF scheduling, we can use the next
timestamp of the timer as the priority of the timer job.
When inserting a timer job into the events queue, the
queue can access the next timestamp of the timer and
insert the job based on the timestamp.

As a second option, we propose to add a user-defined
priority field to the timer structure. It can either hold
static priorities for static-priority scheduling or relative
deadlines for dynamic-priority scheduling. The approach
theoretically supports any job-level fixed-priority non-
preemptive scheduler if the priority can be decided when
the job arrives, e.g., the non-preemptive rate-monotonic
(RM) and earliest-deadline-first (EDF) scheduling policies
for uniprocessor systems. While this option is less user-
friendly, as it requires users to change the current code of
their system to provide the priority of the timer jobs,
it is a more versatile approach and supports any job-
level priority ordering. We provide both options to enable
priority-based scheduling in ROS 2.

After prioritization of the events queue using one of

the two options above, the corresponding schedule for the
running example is depicted in Figure 2d. Specifically,
at time 10, the second job of task τ1 is inserted into
the events queue with the highest priority and is chosen
to be scheduled at time 13. The corresponding schedule
coincides with the schedule under classical non-preemptive
FP scheduling from Figure 2a. To conclude, our changes
enable the events executor to be used for arbitrary
fixed-priority or dynamic-priority scheduling policies for
non-preemptive scheduling. Thus, our proposed design is
compatible with the classical real-time scheduling theory.
In Section VI, we discuss the compatibility of our proposed
scheduler with the classical real-time scheduling theory.

VI. Compatibility with Non-Preemptive Schedulers for
Periodic Tasks

In this section, we explain how our proposed scheduler
from Section V bridges the gap between the literature
on priority-based scheduling and ROS 2. To that end,
we show that our scheduler behaves analytically like a
non-preemptive work-conserving priority-based scheduler
in Section VI-A. In Section VI-B, we discuss the over-
head that results from our scheduler. We specify which
analytical results apply to our scheduler in Section VI-C,
focusing on the worst-case response time and end-to-end
latency (which is one of the predominantly studied metrics
for ROS 2 systems).

For the discussion in this section, we assume that the
ROS 2 application has only timers and the system is
exclusively used to execute the ROS 2 application on
one processor. An extension to incorporate subscriptions
can be found in Section VII. We assume that tasks have
different priorities and ties are broken arbitrarily but
deterministically.

A. Analytical Behavior of Our Scheduler

Our solution uses the events executor with a modifica-
tion of the events queue for priority-based job ordering.
The release of timer jobs into the events queue is done in
the timer management thread, which is given a higher
priority than the default thread. Therefore, whenever
the timestamp of the timer task is reached, a job of
that task is inserted into the events queue immediately3.
Hence, jobs are released (i.e., inserted into the events
queue) periodically. Moreover, scheduling decisions are
made whenever a job finishes by pulling the first job
(i.e., the highest priority job) from the events queue.
In addition, when the executor idles and a new job is
released, it makes a scheduling decision immediately and
starts executing the job. Therefore, our scheduler behaves
like a typical non-preemptive work-conserving scheduler.

3Please note that our solution only works under the assumption
that the timer management thread is not blocked.



B. Bounding the Releaser Overhead
Let δ > 0 be the maximal time for releasing a job. Then,

if a job is released into the events queue, this prolongs the
execution time of the job that is currently running. Hence,
by counting the maximal number of releases during the
execution of a job, we obtain a bound on the overhead. We
denote by ∆i the overhead that jobs of τi can experience.

With our solution, a job is released whenever a times-
tamp is reached. The number of timestamps that can occur
for a task τj during an interval of length t is

⌈
t
Tj

⌉
. Let

t0 ∈ R>0 be the lowest positive real number such that
t0 ≥ Ci +

∑n
j=1

⌈
t0
Tj

⌉
· δ. Then t0 is the amount of time

that a job of τi can execute, including the overhead from
releasing other tasks. Hence, the release overhead for task
τi is bounded by

∆i ≤
n∑

j=1

⌈
t0
Tj

⌉
· δ. (1)

This overhead has to be accounted for when applying the
results in the literature for non-preemptive schedulers by
prolonging the worst-case execution time value Ci by ∆i.

This bound on the overhead ∆i can be tightened further
if the following two conditions hold:

• The task set has constrained deadlines.
• The task set is already shown to be schedulable (e.g.,

by using the bound on the overhead from Equation (1)
together with a schedulability test that is referenced
in Section VI-C).

Under these conditions, every other task can only release
one job during the execution of a job of τi. Otherwise,
assuming a task τj releases two jobs at timestamps t1 and
t2 = t1+TJ during the execution of a job of τi, then the job
of τj cannot be executed until time t2. Hence, it would miss
its constrained deadline, which violates the schedulability
of the task set. Therefore, under the two conditions, the
overhead for the releaser is upper bounded by

∆i ≤ n · δ, (2)

where n is the number of tasks in the system.
We note that it is unsafe to apply the tightened bound

from Equation (2) directly for calculating a response time
bound and checking the schedulability based on that.
However, when the response time is already shown to
be less than the deadline Di, we can use this formula
to tighten the response time bound further. This can be
beneficial when applying analyses that utilize the worst-
case response time (cf. Section VI-C).

C. Analytical Results
As detailed in Section VI-A, our proposed scheduler

behaves analytically like a typical non-preemptive sched-
uler. Although this pertains to any scheduling algorithm
that can be modeled by reordering the events queue, as
discussed in Section V-B, we focus specifically on FP and

EDF scheduling. For this section, we assume that the
overhead is accounted for by prolonging the WCET, i.e.,
by redefining Ci := Ci +∆i.

Worst-Case Response Time: The worst-case response
time of a task is the maximal time between the release
and finish of any job of that task. With our proposed
scheduler, the rich literature on non-preemptive scheduling
for periodic tasks becomes applicable (cf. [12], [15], [24],
[31], [42]). Note that this also encompasses the literature
on non-preemptive sporadic tasks by setting the minimum
inter-arrival time to the task period. Especially, results for
non-preemptive FP scheduling can be found in [12], [15],
[31], [42] and results for non-preemptive EDF scheduling
can be found in [15], [24], [31]. With our scheduler, any
of these analyses can be applied to derive a bound on the
worst-case response time. We note that when a task set is
shown to be schedulable (for example by any of the above
analyses), then we can also claim an upper bound on the
worst-case response time, namely Ri ≤ Di.

End-To-End Latency: One of the predominantly
studied metrics for ROS 2 applications is end-to-end
latency. That is, given a so-called cause-effect chain,
which is a sequence of tasks E = (τi1 → . . . τiN ), with
ij ∈ {1, . . . , n} being a task index for all j = 1, . . . , n, then
we are interested in the amount of time that data needs to
traverse the cause-effect chain. Specifically, the Maximum
Reaction Time (MRT), i.e., the amount of time until an
external cause is fully processed, and the Maximum Data
Age (MDA), i.e., the age of data utilized in an actuation,
have been analyzed extensively in the literature. Recently,
it has been shown that MRT and MDA are equivalent [19].
Hence, we use Lat to denote the end-to-end latency of a
cause-effect chain in general.

While there are only a few analytical results for the
standard ROS 2 application [35], [37], there is a large body
of literature results for typical periodic tasks [2], [3], [5],
[11], [14], [16]–[20], [22], [26]. Our scheduler enables such
results and insights from end-to-end analysis for periodic
task systems.

A classical bound, proposed by Davare et al. [11], is to
bound the end-to-end latency by summing up the task
periods Tij and worst-case response times Rij :

Lat ≤
N∑
j=1

(
Tij +Rij

)
(3)

Here, Tij is the period of the j-th task in the cause-
effect chain, and Rij is the worst-case response time
of the j-th task in the cause-effect chain, i.e., of task
τij . The bound assumes that tasks communicate via
the implicit communication principle [22], i.e., jobs read
data when they start execution and write data when
they finish execution. While the original bound is proven
only for preemptive fixed-priority scheduling in [11], this
result is universally applicable when utilizing a correct
bound on the worst-case response time. This is proven for



example as a byproduct of the probabilistic analysis by
Günzel et al. [21], i.e., their reduction to the case with
deterministic worst-case response time bound in Note 6.3
of [21] proves Equation (3) without assumptions on the
scheduling algorithm.

To summarize, given a cause-effect chain E on the task
set T scheduled by our scheduler, then the following steps
result in a bound on the end-to-end latency:

1) Calculating the overhead ∆i from Section VI-B and
incorporating it in the WCET by Ci := Ci +∆i.

2) Providing an upper bound on the worst-case response
time Ri using literature results for non-preemptive
periodic tasks.

3) Calculating a bound for the end-to-end latency using
Equation (3).

In Section VIII, we compare this bound on the end-to-
end latency with the latency that can be analytically
guaranteed for the typical ROS 2 scheduler [37].

VII. Subscription Tasks
The previous sections focused on the behavior of timer

tasks. However, besides timers, ROS 2 allows tasks to be
triggered through the built-in Data Distribution Service
(DDS). Since such subscription tasks are widely used in
practice, this section explains how our findings can be
extended to systems involving subscription tasks.

First, we observe that our proposed scheduler from
Section V still fulfills P1) and P2) even for subscription
tasks. That is, by giving the DDS threads higher priority
than the default thread or by running them on a separate
core, the release of subscription tasks is not blocked by
job execution, and a new scheduling decision is made after
every job.

We are left with the problem that subscription tasks
cannot be modeled and analyzed as periodic tasks be-
cause they are not inherently time-triggered (unlike timer
tasks). Instead, the timing behavior of subscriptions is
dependent on the tasks that publish to the subscription’s
topic. Furthermore, there is no direct parameter to set
the priority of a subscription task. In the following, we
present two approaches to model and analyze subscription
tasks. First, a sporadic task model that applies to any
system structure. Second, a limited-preemptive scheduling
approach can be used for systems with a specific structure
to obtain potentially tighter bounds. Afterward, we discuss
solutions for the prioritization of subscription tasks.

A. Modeling as Sporadic Tasks
To analyze subscriptions as sporadic tasks, we need to

assume that subscription tasks have a minimum inter-
arrival time > 0, meaning that no two jobs of the same
subscription task are released within this time frame. If
such a minimum inter-arrival time can be identified, then
we can analyze them as sporadic tasks. For example,
if tasks are assumed to only publish once at the end
of their execution, the minimum inter-arrival time can

be bounded by the minimum best-case execution time
among all tasks that publish to the subscription topic,
for single-executor systems. While this general approach
to deriving a minimum inter-arrival time can be quite
pessimistic, more dedicated analyses for specific task
sets can potentially derive much tighter bounds on the
minimum inter-arrival time.

Please note that, as in Section VI-B, we also need to
account for the overhead from the releaser. For this, we
prolong the WCET of the subscription tasks. Given a
minimum inter-arrival time Ti for a subscription task τi,
the overhead ∆i is bounded by Equation (1).

B. Modeling as Limited-Preemptive Tasks
For a special case, where tasks are arranged in se-

quences, the analysis for limited-preemptive tasks is appli-
cable. That is, we consider the case that each task invokes
the activation of at most one subscription task, and each
subscription task can be activated by exactly one task.
Furthermore, we assume that the first task of a sequence
is a timer task, to achieve time-triggered behavior, and
all subsequent tasks are subscription tasks since they
subscribe to a topic by definition. An example of such
sequences can look as follows:

• sequence1 = timer1 → subscription1 → subscription2

• sequence2 = timer2 → subscription3 → subscription4

Each job of the timer task in a sequence releases one job
of the subsequent subscription tasks. Furthermore, we as-
sume no delay is introduced by the DDS between releasing
a subscription task and activating the downstream task,
preventing lower-priority jobs from being started before
the subscription task’s release. For this, ROS 2 provides
the option to use synchronous DDS communication or
zero-copy communication.

With these assumptions, the literature on limited pre-
emptive scheduling, e.g., [4], [7], [43], is applicable, where
each sequence is modeled as one ‘task’, with each timer
task and subscription task being a ‘subtask’. Each subtask
is scheduled non-preemptively, and between subtasks,
the task can be preempted. The benefit of considering
sequences is that there is no need to determine (potentially
pessimistic) minimum inter-arrival times of subscription
tasks.

We further note that, in case the DDS introduces a
certain delay in releasing the subsequent subscription [28],
another lower-priority job may be started in between the
execution of two non-preemptive subtasks. In that case,
the additional delay can be modeled as self-suspension [9].
More specifically, the set of sequences behaves like a
set of segmented self-suspending tasks scheduled non-
preemptively on a single core.

C. Prioritization of Subscription Tasks
For both models, a prioritization of the subscription

tasks is necessary. Currently, there is no direct way to set
the priority of a subscription task in ROS 2. However, we



propose two potential solutions to prioritize subscription
tasks.

• The first one is to utilize the ROS 2 DDS and its
Quality-of-Service (QoS) settings to configure param-
eters about the communication behavior. Specifically,
each subscription has one topic that it subscribes to,
and each topic has a QoS setting. Currently, one QoS
parameter for topics is the so-called deadline [32],
which for topics describes the expected maximum
amount of time between subsequent messages being
published to the topic. To integrate the minimum
inter-arrival time, we propose to introduce a QoS pa-
rameter that reflects the expected minimum amount
of time between subsequent messages being published
to the topic. For the final integration into the schedul-
ing decisions, changes to the executor are necessary
that would consider the DDS QoS parameters, such
as the minimum inter-arrival time.

• For the second one, we propose to add a priority
field to subscriptions, which can be set by the user.
This approach is more direct and flexible but requires
changes to the ROS 2 codebase and the application
code. Given this priority field, the same procedure
as for the timer jobs mentioned in Section V-B
can be applied for both static and dynamic priority
assignments.

In both cases, it would be beneficial to have interfaces
to dynamically set the priority comparison function of
an executor. This would maximize compatibility, ensuring
that existing executors can still be used, while other
scheduling policies can be implemented just as easily.

In any case, the priority queue that we introduced in
Section V to replace the events queue can be used to
handle both timer jobs and subscription jobs. Moreover,
there are no further modifications required for handling
subscriptions.

VIII. Evaluation
In this section, we evaluate our proposed modifications

of the ROS 2 events executor and the corresponding
analyses. The evaluation consists of three contributions:

• We confirm compatibility with scheduling theory
on non-preemptive schedulers for periodic tasks in
Section VIII-A. More specifically, we demonstrate for
a timer-only task set that the analytical results of
Section VI are applicable. That is, the modified ROS 2
events executor does not drop jobs, and it respects the
worst-case response time bounds for non-preemptive
scheduling presented in Section VI-C.

• In Section VIII-B, we show that the bounds on end-
to-end latency for cause-effect chains, enabled by
the theory of non-preemptive scheduling bounds in
Section VI-C, are tighter than the state-of-the-art
analytical end-to-end latency bounds for the default
executor. To that end, we apply the analyses to syn-
thetic task sets using the WATERS [27] benchmark.

• We compare the performance of our modified executor
using the RM scheduling policy with the default
executor in the Autoware reference system in Sec-
tion VIII-C. The Autoware reference system includes
both timers and subscriptions, and demonstrates that
we can achieve lower end-to-end latency than the
other executor options that are provided natively by
ROS 2.

Our experiments feature the following executor configura-
tions:

• default executor (Default),
• static default single-threaded Executor (Static),
• unmodified default events executor (Events),
• our rate-monotonic events executor (RM), and
• our earliest-deadline-first events executor (EDF).

We include the static default executor for completeness. It
behaves like the default executor, but with less overhead,
as it does not have to handle dynamic system configura-
tions. We also provide an artifact4 of our evaluation.

A. Compatibility with Scheduling Theory
In this subsection, we demonstrate that existing results

on non-preemptive scheduling apply to our scheduler, and
analytical results correctly predict the behavior of the
system.

To that end, we examine a timer-only task set that
consists of three types of components, and seven nodes in
total. The system has four cameras, two LiDARs, and an
IMU. Each node has one timer task, and each component
is independent of the others, meaning that they do not
pass data between each other and have no precedence
constraints. By varying the maximum execution time of
the tasks, we configure the system to have a utilization of
60%, 80%, or 90%. Our three configurations are as follows:

60% utilization
• 4 Camera Nodes: 84ms period, 10ms execution each
• 2 LiDAR Nodes: 200ms period, 10ms execution each
• 1 IMU Node, 30ms period, 1ms execution
80% utilization
• 4 Camera Nodes: 84ms period, 14ms execution each
• 2 LiDAR Nodes: 200ms period, 10ms execution each
• 1 IMU Node, 30ms period, 1ms execution
90% utilization
• 4 Camera Nodes: 84ms period, 16ms execution each
• 2 LiDAR Nodes: 200ms period, 10ms execution each
• 1 IMU Node, 30ms period, 1ms execution
Task periods stay consistent across all utilization levels,

so all task sets have the same hyperperiod of 4.2 s. Each
task set is run for 5min, elapsing over 70 hyperperiods.
We repeat this setting for each executor design.

Each of these task sets is pinned to a single core of
a Raspberry Pi Model 4B with 4GB of RAM running

4https://github.com/tu-dortmund-ls12-rt/ros2_executor_
evaluations

https://github.com/tu-dortmund-ls12-rt/ros2_executor_evaluations
https://github.com/tu-dortmund-ls12-rt/ros2_executor_evaluations


Fig. 3: Dropped jobs on timer-only task sets: A checkmark
indicates no dropped jobs across all utilization levels.

Ubuntu 22.04 and ROS 2 Humble. VIII-A uses one core,
while VIII-C uses two cores with no thread pinning. VIII-B
assumes that the executor runs on one processing core.

Number of Dropped Jobs: The rate of dropped jobs for
different configurations is shown in Figure 3. We can see
that the default and static executors repeatedly drop jobs.
In some cases, a drop rate of 5% is observed. Following
our analytical results of Section VI-A, which indicate no
job drops, our proposed events executors do not have any
job drops for any configuration of the RM and EDF events
executors.

Response Time Bounds: In the following, we analytically
derive upper bounds on the worst-case response time,
following Section VI, and then confirm that the response
time bounds are not violated by our RM events executor.

For the analysis, we measured that a job release takes
up to δ = 0.12µs. The total overhead ∆i for a timer task τi
can be determined by Equation (1). Doing the calculations
for the task sets of this section, every timer task has an
overhead of ∆i = 0.84ms. For the analysis, we add this
overhead to the WCET of each task, i.e., Ci := Ci +∆i.

Afterward, we apply Equation 6 from von der Brüggen
et al. [42] to determine the worst-case response time of
each task.

Theorem 1 (Non-preemptive FP, reformulated from [42]).
Assume that the tasks T = {τ1, · · · , τn} are ordered by
their priority, i.e., τ1 has the highest priority and τn has
the lowest priority. If there exists a t ≥ 0 ∈ R such that
t ≤ Dk and

t ≥ Ck +max
i>k

Ci +
∑
i<k

⌈
t

Ti

⌉
Ci, (4)

then the worst-case response time Rk of τk ∈ T under
non-preemptive FP scheduling is upper bounded by t.

We consider implicit-deadline task systems, i.e., the
relative deadline of a timer task is equal to its timer
period. The analyzed worst-case response times for our

TABLE I: Analytical worst-case response times (ms) of
our RM events executor.

Utilization 60% 80% 90% Period
IMU 12.67 16.67 18.67 30

Camera 57.83 75.66 83.66 84
LiDAR 70.50 149.50 167.33 200

Fig. 4: Response Time of Camera Tasks (ms), D=84ms

RM events executor are reported in Table I, indicating
no deadline misses. Thus, we should not observe any job
drops, as verified in Figure 3, and all tasks are guaranteed
to meet their deadlines.

We then measured the response times during the ex-
periment. The aggregated results of the Camera nodes
are shown in Figure 4, the LiDAR nodes in Figure 5,
and the IMU node in Figure 6. As shown in the figures,
the response times of our work are consistent with the
analytical results, and no deadline overruns are observed.
Furthermore, in Figure 6, we see that the IMU tasks
have deadline overruns on the Default, Static, and Events
executors. We note that Figures 4, 5, and 6 only account
for the response times of jobs that are not dropped.
Hence, for a significant amount of timestamps, the Default
executor and Static executor do not respond within the
deadline, as can be observed in Figure 3.

In conclusion, our analysis not only correctly indicates
the absence of dropped jobs in our RM events executor,
but also a correct upper bound on the response time of
each task.

B. Tighter End-to-End Bounds for ROS 2
In this section, we compare the analytically derived

upper bounds of the end-to-end latencies between the
default ROS 2 executor and our RM events executor. For
this experiment, we generate synthetic task sets using the
WATERS benchmark [27] for automotive systems.

We evaluate utilization levels of 60%, 80%, and 90%,
generating one thousand task sets per configuration with
10 to 200 tasks. To compute end-to-end latencies, we
generate 5 to 60 task chains, each with 2 to 15 tasks.
We assume all tasks are assigned to one events executor
running on a single core.



Fig. 5: Response Time of LiDAR Tasks (ms), D=200ms

Fig. 6: Response Time of IMU Tasks (ms), D=30ms

For each task set, we calculate the end-to-end latency for
the default ROS 2 executor and our RM (including both
RO- and RE-options, as the analysis) events executor,
as presented in Section VI-C. Specifically, we use Equa-
tion (3) in Section VI to calculate the end-to-end latency
of each chain.

The end-to-end latency of the default ROS 2 executor
has been analyzed by Teper et al. [35]. We use Equa-
tion (15) of Lemma VI.1 and Equation (17) of Lemma VI.2
from [35] to get an upper bound on the latency of each
timer. For each chain, we sum up the latency upper bounds
of all chain tasks to get the end-to-end latency of the chain.

For each chain, we calculate the normalized reduction
of the end-to-end latency by using Edefault−ERM

Edefault
, where

Edefault (ERM , respectively) is the end-to-end latency of
the chain under the default executor (our RM events
executor, respectively). The results of the evaluation are
shown in Figure 7, where the x-axis is the normalized
reduction and the y-axis is the number of chains within
the binned normalized reduction.

The end-to-end latencies of the chains are typically
much lower when using our RM events executor. As
the utilization level increases, the number of chains with
higher end-to-end latencies increases as well. This is
because the default ROS 2 executor treats all callbacks
fairly regarding their priorities. Meanwhile, static-priority
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Fig. 7: Reduction of the end-to-end latency between the
default ROS 2 executor and our RM events executor.

scheduling assigns some callbacks lower priorities, increas-
ing their response time (see Figure 5), and resulting in
a negative reduction of end-to-end latencies for chains
that include such tasks. However, the majority of chains
have lower end-to-end latency when using the RM events
executor. In some cases, we observe a normalized reduction
of the end-to-end latency bound of almost 90%. Our
experiment shows that our design can be applied to
different kinds of task sets and potentially leads to latency
improvements.

C. Performance of Autoware Reference System

In this section, we evaluate end-to-end latencies for
the Autoware reference system, detailed in [41], which
includes interconnected timers and subscriptions [40]. The
Autoware reference benchmark runs a simulated version
of the Autoware application on a Raspberry Pi Model 4B
running Ubuntu 22.04 and ROS 2 Humble. We run the
ROS 2 Autoware benchmark on two dedicated cores, while
the other two cores are handling the remaining services on
the operating system. Specifically, we measure the end-to-
end latency of the hot path defined in the benchmark from
the front and rear LiDAR sensors to the object collision
estimator (c.f. the Autoware reference system), as this
latency is a key metric for the responsiveness to crash
avoidance. The data at the start of the hot path that is
generated by the LiDARs is produced at a frequency of
10Hz.

For our RM events executor, the subscription tasks
inherit the highest priority from their corresponding up-
stream publishers. Non-preemptive EDF in this scenario



Fig. 8: End-to-end latency of the hot path in the Autoware
reference system under different executors.

is not well specified, as subscription tasks do not have any
assigned deadlines, and hence is not part of this evaluation.

Figure 8 shows the violin plot for the latency of the hot
path in the Autoware reference system from a test run of
600 seconds. Of the executors measured, our RM events
executor has the best worst-case latency, significantly
outperforming the other executors. Compared to our work,
the default ROS 2 executor has a 2.6x slowdown along the
hot path. Our evaluation shows that our executor design
using existing scheduling policies from classical real-time
systems can be applied to practical ROS 2 applications
and can provide major benefits in terms of end-to-end
latency.

IX. Conclusion
This paper provides deep investigations of the recently

introduced events executor (in 2023) in ROS 2 to pro-
vide compatibility with the classical real-time scheduling
theory of periodic task systems. Specifically, our solution
is easy to integrate into existing ROS 2 systems since it
requires only minor modifications of the events executor,
already natively included in ROS 2. Thus, it can coexist
with available ROS 2 executors, such as the default
executor.

Our study enables the rich literature of the real-time
scheduling theory for non-preemptive schedules to apply
to ROS 2, under the assumption that an individual core
is exclusively assigned to our executor. Furthermore, we
intensively validate the feasibility of our modifications
for non-preemptive RM and non-preemptive EDF in the
ROS 2 events executor for several scenarios. The evalu-
ation results show that our ROS 2 events executor with
minor modifications can have significant improvement in
terms of dropped jobs, worst-case response time, end-to-
end latency, and performance in comparison to the default
ROS 2 executors that are available.

We note that the emphasis of our paper is the compat-
ibility of the ROS 2 events executor with the classical
scheduling theory of periodic tasks. As a result, we
mainly focus on the transformation of a timer into a

periodic task. We highlight that event-triggered tasks
require dedicated analyses, but also provide methods to
analyze some specific system configurations using existing
analyses on limited preemptive scheduling. Therefore, in
future work, we will further investigate the interaction of
the built-in DDS and the events executor to provide more
insights when both timers and subscriptions are present
and interact with each other.

Finally, to be compatible with event-triggered tasks
in ROS 2, such as subscriptions, we propose to add
dedicated interfaces to ROS 2 to specify timing properties,
which are currently missing. Towards this, we discuss two
potential solutions, either involving DDS QoS settings
or introducing a dedicated priority field. These additions
would enable the integration of many scheduling policies
into ROS 2 and provide compatibility for event-triggered
tasks.
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