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ABSTRACT OF THE DISSERTATION

Multi-Layer Support for Component-Based Cyber-Physical Systems Applications

by

Oren Bell
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Professor Roger Chamberlain, Chair

Component-based design is a paradigm meant to aid in development of software applications

by modularizing different functionalities of a system. This building-block approach is used

extensively in cyber–physical and robotic systems. Common and established solutions to

specific problems, such as perception nodes, state estimators, and motion planners, can be

developed, verified, and reused as off-the-shelf modules.

These modules may be integrated atop today’s heterogeneous hardware platforms, where an

application can be distributed across GPUs, FPGAs, and CPU cores. When heterogeneous

computational devices share the workload of a collection of components, the very act of

integration may inject timing uncertainty. For example, data often must traverse different

memory domains, incurring copies that may violate real-time budgets. Furthermore, the

Robot Operating System (ROS) 2, the de facto middleware for robotics, has a scheduler that

departs from established real-time practice, and work has only recently begun on establishing

timing guarantees for it.

This dissertation builds a vertical solution that restores predictability without sacrific-

ing modularity. The work is organized into 3 layers: memory management of hardware-

accelerated devices, a real-time scheduler for ROS 2, and a control/scheduling co-design

study.

ix



Collectively, these contributions demonstrate that the promises of component-based de-

sign—modularity, compositional verification, and rapid development—can survive in the age

of hardware acceleration, while still meeting cyber-physical constraints on timing and other

properties end-to-end. By coupling memory-domain awareness with analyzable schedul-

ing and timing-aware control, this work charts a practical path toward predictable, high-

performance CPS and robotic systems.
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Chapter 1

Introduction

This dissertation presents a systematic approach to designing predictable component-based

real-time systems for cyber-physical applications, with a particular focus on robotics. The

work emerged from a preliminary robotics project involving an autonomous drone applica-

tion, which revealed fundamental challenges in achieving predictable timing. This initial

exploration evolved into a comprehensive study spanning three critical layers of the system

stack: memory management, scheduling, and control.

The journey began with the development of the Deer Stalker project (see Section 1.2),

an autonomous drone system that highlighted the performance bottlenecks inherent in the

Robot Operating System (ROS) 2 framework that this application was built on (detailed in

Section 1.1). This led to the development of Hazcat (presented in Chapter 2), a memory-

domain-aware communication layer. After delving into development of the ROS 2 stack, I

turned my attention to the ROS 2 scheduler, which recently had been the focus of academic

research highlighting its design flaws. This led to collaboration with the DAES Lab at TU

Dortmund on creating real-time compliant schedulers, which is documented in Chapter 3.

Finally, through collaboration with Purdue University, this research arc has culminated in a

control/scheduling co-design study that demonstrates how worst-case timing analysis can be

incorporated into control logic decisions that apply to other cyber-physical systems domains

beyond robotics, e.g., real-time hybrid simulation in structural and mechanical engineering.

These contributions each provide different methods for building predictable real-time systems

in component-based architectures. Figure 1.1 provides an illustrated breakdown of each

contribution and how it fits into the system stack. Summaries of the 3 broad contributions

are detailed below.
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Ch 4: Safe Transition between Linear 
and Nonlinear State Estimation

Ch 2.1 Heterogenous Memory Aware Zero-Copy

Ch 3.1: Applying Real-Time Theory
to Events Executor

Ch 3.2: Graph Aware 
Scheduling

Ch 2.2: Dynamic Device 
Memory Allocation

Ch 1.2: Cinematography 
Drone

Memory
Management

ROS2
Scheduling

Robotics/CPS
Application

Figure 1.1: Dissertation layers

(1) Hazcat introduces a memory-domain–aware publish/subscribe layer1. By detecting

when producers and consumers reside in the same memory domain, Hazcat achieves true

zero-copy, even among accelerated kernels on different components. Otherwise, it performs

the minimum safe transfer. Existing middleware supports zero-copy in the CPU domain, but

to our knowledge Hazcat is the only zero-copy communication middleware that supports zero-

copy between accelerated kernels and also in the CPU domain. Pre-existing middleware only

supports static allocations, so I also pursued the possibility of supporting dynamic memory

allocation. Our particular system model violated certain assumptions that rendered existing

dynamic memory allocation algorithms ineffective, so I developed a new set of dynamic

memory allocation algorithms for device memory just to support Hazcat in its unique niche.

Both of these contributions are described in Chapter 2.

(2) A Real-Time ROS2 Executor refactors the recently released events executor. My co-

authors and I observed that the events executor allows for custom event queues with arbitrary

behavior. We exploit this to create custom release logic. The new design is compatible with

the classical periodic-task model and augments it with graph-aware, fixed-job-level priorities,

addressing some of the design flaws [29] that previously plagued ROS2. Response-time

bounds are derived for arbitrary DAGs. This work is described in Chapter 3.

1Publish/subscribe (pub/sub) is a communication paradigm facilitated by topics, which act like data
queues that can have multiple writers (publishers) and readers (subscribers). Each publisher and subscriber
is affiliated with only one topic. Subscribers are notified when data arrives on their topic.

2



(3) A Control/Scheduling Co-Design Study considers a safety-critical state-estimation

pipeline that normally runs a linear Kalman Filter [70] but may switch to an Extended (or

Unscented) Kalman Filter [103,119] or potentially even another kind of state estimator (e.g.,

a particle filter) when dynamics depart from a region of linearity. The mode-change decision

explicitly incorporates worst-case timing analysis, and guarantees an upper bound on the

estimation error, illustrating how control logic and real-time scheduling can be co-engineered.

I also have preliminary work on implementing this project on an FPGA, and comparing its

performance to a GPU. I explore the limitations and motivations of hardware-accelerated

CPS applications with mixed devices. This work is described in Chapter 4.

1.1 ROS 2

ROS 2 is a widely adopted software framework for developing robotics applications, which

has garnered significant attention from the real-time systems research community. While

ROS 2 provides mechanisms for modular development, its default scheduling capabilities

present challenges for predictable real-time performance, particularly for complex applica-

tions involving branching or merging data flows (i.e., arbitrary graphs).

Additional discussion on ROS 2’s scheduling behavior and contributions towards improving

it can be found in Chapter 3. This preface is meant to serve as a brief introduction to the

ROS 2 framework and terminology, which is used throughout the dissertation.

ROS 2 provides a component-based framework for building robotic systems. Key concepts

include:

• Nodes encapsulate related functionalities (e.g., sensor driver, path planner).

• Topics establish named communication channels facilitating data exchange via a

publish-subscribe (pub/sub) paradigm. Nodes that provide data will publish to a

topic, and nodes that are interested in that data will subscribe to it. The middle-

ware responsible for the facilitation of data transfer is typically the Data Distribution

Service (DDS) [45,48], although other communication protocols may be used [49,127].

• Callbacks are functions within nodes that are triggered by specific events, primarily:

3



Figure 1.2: ROS 2 stack [61]

– Timer Callbacks execute periodically based on configured rates.

– Subscription Callbacks: Execute upon receiving a message on a subscribed

topic.

Callbacks serve as the atomic executable units of computation in ROS 2. Through publish-

ing and subscribing, they also can trigger each other’s execution. The sequence of callbacks

triggered by data flowing through topics forms the application’s processing logic, often cre-

ating implicit dependencies or chains of execution. Such chains were initially defined in [29],

and subsequent work [18,20,21,68,104,110,114] has continued using that abstraction.

ROS 2 is designed in a hierarchical stack, shown in Figure 1.2. The top layer (rclcpp, rclpy,

etc) is used directly by the end-developer and provides a specific language binding to use

ROS 2 with. This is where scheduling decisions are made. Without loss of generality, I will

focus on rclcpp in this dissertation.

The basic functionality of ROS 2 is in the rcl layer, which provides features like nodes,

namespaces, and logging.

4



The lowest layer of the ROS 2 stack, called the ROS Middleware (RMW) Abstraction In-

terface, serves as a wrapper for a communication platform, such as FastDDS [45] or Cy-

cloneDDS [48], which directly facilitates communication between nodes.

1.2 Preliminary Work

Before the dissertation topic was fully defined, preliminary work was done to develop an

example robotics application. The application was a drone follower program, inspired

by [23–25]. The application was developed in ROS 2, and was intended to be an example

application for future research. Development eventually halted when performance limita-

tions were encountered, which in turn inspired the work presented in Chapters 2 and 3. The

application is detailed here, as important context and motivation for this dissertation.

The basic structure of the application was taken from [23] and is shown in Figure 1.3. It

consists of a classic sensing/planning pipeline, with a parallel pipeline for mapping. It is

meant to run in AirSim [89], a robotics simulator that runs on top of the Unreal Engine [44].

In the paper that inspired our implementation, the authors intended to use the application

as a platform to develop a cinematographer drone that incorporated automated cinematic

decisions into its trajectory planning. It was designed to follow a moving target, such as a

real-life actor. In our implementation, we had it follow a simulated deer, simply because the

CGI model was free and included idling, walking, and galloping animations.

The sensing pipeline comprises 3 steps:

• Detection and Tracking consisted of a YOLOv4 model that detected the actor in

frame, and, importantly, how far off-center it was in the frame. I had to retrain the

model on images of our CGI deer, a process that was easily automated thanks to the

Unreal Engine environment. A cropped bounding box of the actor was passed onto the

next step. Figure 1.4a shows a still frame from the object detection step.

• Heading Estimation was given a tightly cropped and centered picture of the actor,

with which a vision AI model would determine which direction the actor was oriented

in. This task required training an original base model, but again, the collection of data

5



Figure 1.3: Cinematography Application [23]

was easily automated because of the Unreal Engine environment. Once the actor’s po-

sition and heading were known, this was passed onto the final sensing step. Figure 1.4b

shows one frame from our training set.

• Motion Estimation used a state estimator to estimate the actor’s position and ve-

locity. Assuming the drone’s position is known with high certainty, the relative mea-

surements of the actor’s position and orientation from before are projected onto the

ground plane, to compute the actor’s position and orientation in the world frame. This

is fed into a Kalman Filter to estimate the actor’s position and velocity, and future

trajectory. This estimation can be used to continue forecasting the actor’s trajectory

even when measurements aren’t available, such as when the actor is occluded.

The mapping pipeline comprises 2 steps:

• Data from the Lidar and the drone’s position were fused to create and expand a 3D

Occupancy Grid of the environment.
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(a) Object detection results, showing bounding
boxes with labels and confidence scores

(b) Heading Estimation, model prediction in red,
ground truth in green

Figure 1.4: Still frames from Deer Stalker Application

• The map data was converted into a Truncated Signed Distance Transform (TSDT )

to create a signed distance field of the environment. The inside of obstacles are given

large negative values, and the proximity just outside the obstacles are given positive

values, truncated to a fixed value beyond a certain distance from the obstacle. This

TSDT is passed into the planning pipeline to plan a trajectory for the drone that safely

avoids obstacles.

The planning pipeline also comprises 2 steps:

• Trajectory Optimization used a path planner to plan a trajectory for the drone that

safely avoids obstacles. The default path is a trajectory parallel to the actor, given a

fixed distance and position for the drone (both are parameters that can be changed at

runtime, if a different angle is required later in a scene). The optimization step takes

this default path and adjusts it to avoid obstacles. This is done by maximizing a cost

function that includes, among other components, the line integral of the trajectory

computed through the TSDT from the mapping pipeline. Since the TSDT is positive

in areas that avoid obstacles, optimizing this cost function will naturally push the tra-

jectory into free space. In [24], they augment this cost function to also avoid occlusion

of the actor, smoothness of the trajectory, and consistency of perspective on the actor.
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• Trajectory Tracking is the actuation step, where the drone’s position is compared

to the planned trajectory, and closed loop control is used to adjust the drone’s position

to follow the trajectory.

This application is a compelling candidate to test future research, because it contains a

diverse set of hardware-accelerable components and poses interesting challenges in system

design. Before the application was fully working, I discovered one such challenge: the map

data was very large, and incurred a high memory overhead when being copied from one

component to another. I started investigating the possibility of using a zero-copy mechanism,

which inspired the work in Chapter 2.

While developing that mechanism, I also became familiar with the ROS 2 scheduler. At the

time, a paper had just been published documenting its faults [29], and I began to explore

that avenue as well. Since the application consists of two chains with a merging data flow,

there was naturally a need to schedule complex graphs reliably on ROS 2, which inspired

the work in Chapter 3.

By the time both of those works were completed, this deer stalker application, as we af-

fectionately called it, had been defunct for multiple years. The ROS 2 distro and AirSim

versions it required were no longer supported, and so we sought to find a new application to

which to apply the techniques developed in this dissertation. A collaboration with colleagues

affiliated with the Robert L. and Terry L. Bowen Laboratory for Large-Scale Civil Engineer-

ing Research at Purdue University called for work on integrated real-time scheduling and

control that could be applied to structural and mechanical engineering applications. This in

turn inspired the work presented in Chapter 4.
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Chapter 2

Zero-Copy Memory Management for

Heterogeneous Computing

Real-time embedded systems support mission-critical and safety-critical applications rang-

ing from automated and connected driving [123] to real-time hybrid simulation in earth-

quake engineering experiments [46]. In recent years, the combination of component-based

modularity and customizable thread and memory management in ROS 2 has made it es-

pecially attractive for developing real-time embedded robotics applications [29], including

the TurtleBot 4 open-source robotics platform for education and research [34], the Hamster

robust micro Autonomous Unmanned Ground Vehicle [35], and the xArm series of robotic

manipulators [116].

Such systems often have timing constraints. Developers must carefully manage hardware

and software overheads, timing variation, and scheduling so that real-time tasks meet their

deadlines. Even atop traditional multi-core platforms, memory operations may introduce

significant overheads, e.g., when the number of cores used exceeds a single chip socket so that

the cost of memory operations between threads on cores in different chip sockets limits how

many cores can be exploited at fine-grained time-scales [46], or when frequent communication

among components causes the aggregate cost of memory operations to approach other less

frequent but more expensive overheads (e.g., thread context switches). Thus, reducing the

frequency of memory operations or making them more efficient [58] is an important issue for

these systems.

For heterogeneous computing platforms that support hardware acceleration of computations

(e.g., NVIDIA Jetson and Xilinx Kria) latency-aware memory management is even more

salient. For example, it has been shown [4,97], that GPUs can be a cause of non-deterministic

behaviour in real-time systems. As one particularly egregious example, memory operations

on NVIDIA GPUs, particularly cudaFree, may cause device-wide synchronization operations
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[125]. With or without hardware acceleration, a multi-component application can reduce its

memory bandwidth by leveraging shared memory structures and passing references to data

instead of copying the data itself [73], whenever possible. Such ”zero-copy” approaches are

intuitive in principle, but must enforce ownership of data to avoid race conditions, which

may raise further engineering challenges in practice.

Zero Copy in ROS 2: Prior developments in ROS 2 have added API calls to the RMW

specification that enable zero-copy through the use of borrow/return semantics. Before

a publisher wishes to send data, it must borrow a message which it can then populate

before publishing. Subscribers receive an immutable pointer to the same data, and when all

subscribers have returned their pointers, the memory for the message is freed or recycled,

depending on the implementation.

A popular implementation of zero-copy semantics for ROS 2 is in the Iceoryx project [49],

which provides a third-party daemon that manages a shared memory pool. Publishers and

subscribers wishing to make use of zero copy are required to use borrow and return semantics

to access memory chunks [74] as follows:

1. Register the publisher and subscriber with the Iceoryx daemon, specifying their topic

of interest

2. Borrow a chunk: the daemon returns the address of the next available block large

enough to fit the message

3. The publisher populates the chunk with data

4. The publisher publishes the chunk, relinquishing ownership

5. Iceoryx notifies all interested subscribers of available data after which (repeatedly)

6. A subscriber awakes and borrows the chunk, receiving a pointer to newly available

data

7. That subscriber processes the data

8. That subscriber returns their reference to the chunk

9. The Iceoryx daemon marks a chunk as available for reuse once all subscribers have

processed it
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Figure 2.1: Time sequence illustrating communication between two hardware accelerated
components

Multi-core performance numbers for Iceoryx show minimal overhead [73], but Iceoryx does

not support zero-copy semantics for other devices’ memory: a developer wishing to lever-

age hardware acceleration must manually copy messages into and out of device memory.

Additionally, the memory pools are pre-allocated by a third-party daemon, which the end-

developer must configure to optimize memory usage. Under the default settings, memory

chunks are likely to be oversized, and may not be plentiful enough to accommodate the

message backlog of a worst-case scenario.

Iceoryx also only supports zero-copy of fixed-size plain-old-data types. Any messages that

require dynamic allocation of memory may be partially allocated on the heap, potentially re-

sulting in invalid pointers and segmentation faults when sharing messages between processes.

This is a limitation our implementation also shares, a fix for which would likely require up-

dates to the ROS 2 API as future work. Another zero-copy mechanism is available higher

in the ROS 2 software stack [62], but it only supports intra-process zero-copy semantics. In

the interest of generality, we do not assume two components share an address space so that

solution is not viable for our use case.

Hardware Accelerated Workloads: Although the addition of zero-copy to ROS 2 can

help to reduce nondeterminism caused by excessive memory operations, we posit that it

does not go far enough. Many robotics applications leverage hardware acceleration for

performance reasons, but ROS 2 zero-copy features are as yet unaware of device-memory

boundaries, so components leveraging hardware acceleration must assume responsibility for

copying data into, within, and out of device memory. Doing so may negate the benefits of

zero copy and introduce further nondeterminism.
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For components sending data to each other, we want to minimize the latency that is due to

3 types of operations, depicted in Figure 2.1: intra-component memory copies (magenta),

compute operations (green), and inter-component memory copies (blue). With hardware

acceleration, whether using GPUs or FPGAs, there are 3 steps: copy to device memory, run

the acceleration kernel, and copy out of device memory [30,124]. These 3 operations happen

within a component. We aim to remove intra-component memory copies entirely by having

middleware assume responsibility for device memory operations. Inter-component memory

copies also may be eliminated when conditions are right for zero-copy to occur, that is, when

two consecutive nodes operate within the same memory domain.

Contributions: The Chapter covers content from two papers [13, 14]. The first paper,

published at RTCSA 2023, introduces Hazcat [95]: a new zero-copy framework that supports

memory domain awareness, performing contextually needed memory operations between

different memory domains, and providing zero copy between two components in the same

memory domain. This is covered in Section 2.1.

The second paper had an abbreviated version published at JRWRTC, the Junior Workshop

for RTNS 2024. This dissertation covers the full contents of the original paper. It explores the

limitations of applying dynamic memory allocation to the Hazcat framework, the challenges

it poses, and new dynamic memory allocation algorithms to address them. This is covered

in Section 2.2.

2.1 Hazcat

We introduce Hazcat [13], a new zero-copy communication middleware that supports memory

domain awareness, performing contextually needed memory operations between different

memory domains, and providing zero copy between two components in the same memory

domain.

We use the term memory domain to refer to any area of memory that is tied to a particular

set of processors, and is guaranteed to be readable from processors in that set: host memory

is a separate domain from GPU memory, both are separate domains from FPGA memory,

and data in one domain must be copied to be accessible in another domain.
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We specify special heterogeneity aware (HA) allocators that manage memory for a particular

memory domain, according to a domain-agnostic interface. They have functionality to access

each other’s memory, and perform copy operations as needed when memory contents are not

in an appropriate domain. We also specify a shared message queue, analogous to a ROS 2

topic, which stores references to messages allocated by an HA allocator. Publishers put

messages into the queue for later consumption by subscribers. When a subscriber expresses

a preference to receive a message in a different memory domain, a copy is made on the fly in

the correct memory domain and a token to the duplicate copy is also stored in the message

queue. This is the worst-case scenario: when data moves across memory domains, a copy

operation must occur. Each topic gets a unique message queue. Unlike Iceoryx, our system

handles zero-copy in a completely decentralized manner, and developers are allowed to apply

custom allocation strategies instead of being forced to use Iceoryx’s static ring buffer.

Hazcat is not truly zero-copy in all circumstances. If an application is only partially hardware

accelerated, memory copies will be required between portions operating in host memory and

portions operating in device memory. However, if consecutive nodes operate in the same

memory domain, we offer the benefits of zero-copy regardless of what that memory domain

is, be it host, GPU, or (in the future) FPGA memory.

2.1.1 Heterogeneity Aware Allocator

Custom memory allocators are already used in real-time systems, e.g. to allocate memory

statically, or to reuse previously allocated objects to avoid overheads of an operating system’s

default dynamic memory management mechanisms. Sophisticated features such as allocator-

aware containers and polymorphic allocators [66] have been developed to allow flexible use

of allocators, through which containers allocated with different strategies can be completely

interoperable without subverting type-safety. A minimal allocator offers 2 functions: allocate

and deallocate. Some allocators also provide object construction, but we omit this in our

design: we assume that our allocators, while potentially managing peripheral device memory,

will run on a CPU and should not attempt to dereference the device memory they allocate.

Managing multiple memory domains within our framework incurs stricter design require-

ments beyond supporting allocate and deallocate functions. We first detail a new extended

interface, describe garbage collection features required whenever sharing memory, present
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the structure of the allocator and its memory pool, and show a way to ensure fidelity when

reconstructing the allocator in other processes.

Allocator Interface

We propose a new allocator interface, shown in Listing 2.1, that adds functionality to convert

arbitrary memory allocated by a separate allocator into a domain readable to the current

allocator. This conversion may operate as a simple passthrough function if the two allocators

operate in the same memory domain (this is our zero-copy condition), or it may perform the

operations necessary to copy data from a separate domain.

Listing 2.1: Allocator interface for heterogeneous computing

class Alloc {

static int domain;

static void * create_alloc (...);

static void * remap(Alloc * alloc);

void unmap();

int allocate(int size);

void share(int offset);

void deallocate(int offset);

void * copy_from(const void* ptr , void* cpu_ptr , int size);

void * copy_to(void* ptr , const void* cpu_ptr , int size);

void * copy(const Alloc* a, void* dst , const void* src , int size);

int shmem_id;

int device_type;

int device_number;

int strategy;

};

Multiple allocators can be written for the same domain. We assume that any allocation

can be accessed by any component in the same domain, provided any requisite memory

mapping operations have been performed. The added functionality is six-fold: remap maps

an allocator previously created in a different process into this process address space; unmap

removes the allocator from this process address space; share increases a reference counter for a

specific allocation; copy from copies from this allocator to a pointer in CPU memory; copy to

copies to this allocator from CPU memory; and copy copies from an arbitrary allocator into

this one, possibly going through host memory as an intermediary. Our allocators return
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an integer offset rather than a pointer: allocators are mapped at different places in each

process’s address space, so allocations are measured relative to the beginning of the allocator

and absolute pointers are recalculated in each process.

Deallocation and Reference Counting

Deallocation of shared memory may need to be performed by any thread: while a message

is created by a publisher, whichever one of its subscribers that holds the reference last is

responsible for deallocation.

For time-sensitive threads, deallocation must be a time-bounded operation, which limits the

types of allocation strategies we can use. For now, we only provide a static ring buffer and

intend to provide additional options in the future, but stipulate that all allocation strategies

must offer O(1) deallocation.

We assume that every memory domain is copyable into host memory and vice-versa. How-

ever, not every memory domain may be copyable into each other, so each allocator must

specify copy from, to copy memory from itself into host memory, and copy to, to copy mem-

ory to itself from host memory. The copy function is often a wrapper for those two steps in

sequence: copying from the source domain to host memory, and then from host memory to

the target domain. However, depending on available hardware, developers may code special

conditions that bypass host memory, e.g., for GPU-GPU copies.

An HA allocator must implement a reference counting strategy, so the deallocate function

will not free an allocation until it is called more times than there have been calls to share

the same allocation. Note this creates a race condition that is resolved by the message queue

as discussed in Section 2.1.3. When implementing new allocators for device memory, the

allocator methods cannot access the memory they are allocating, so strategies like boundary

tags [76] are not applicable.

Allocators provide additional information: device type identifies the hardware device the

allocator is managing memory for; for multiple instances of that device type, device number

can distinguish them; and strategy identifies the allocator approach, such as ring buffers,

TLSF [88], or best-fit [76]. Two allocators’ device type and device number must be the

same to take advantage of zero copy, with device type and strategy used to perform function
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lookups when an allocator is mapped into a new process, based on its ID according to System

V shared memory (a POSIX standard that creates unique system-wide IDs for different

shared memory segments).

Allocator Structure

Figure 2.2: Structure of allocator and
partitions (not to scale)

Each allocator comprises 3 contiguous mem-

ory mappings: a local portion, a shared por-

tion visible across processes, and a pool of

mapped device memory. The local portion

stores function pointers as a way to emu-

late the convenience of object-oriented poly-

morphism, which we use so that our mes-

sage queue does not need to concern it-

self with type information. True polymor-

phism is not possible for objects in shared

memory, due to uncertainty of the struc-

ture of some data types, which combined

with inherent type-erasure that occurs dur-

ing inter-process communication would pre-

vent us from knowing the structure of an al-

locator created in another process. The goal

is for different allocator implementations to

have an identical structure in their first few

bytes, so we use plain-old-data structures for

our allocator design to guarantee this.

Since function pointers are not valid across

process boundaries, the allocator portion

that holds them is not a shared mapping.

This leads to a design in which our allocator object straddles different memory mappings,

the bulk of which is visible across processes, with the local partition only visible to the cur-

rent process. Due to granularity requirements, a minimum of 4kB is allotted to the local

partition, but only 56 bytes are needed for the 7 non-static function pointers. The remainder
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is unstructured space that may be used as appropriate for the convenience of the allocator

implementation. The start of the allocator’s shared portion contains required type informa-

tion that is relevant when remapping it into a new process, using the new allocator interface

described above in Listing 2.1. The rest of the shared mapping varies by implementation.

After the shared mapping is the actual memory pool, often mapped in device memory, which

again varies by implementation. For dynamic allocators, it’s useful to start with an arbitrar-

ily large virtual memory pool unbacked by physical memory. This gives the allocator room

to grow, while still guaranteeing it can be reconstructed in a different process.

Reconstructability of Allocators

Reconstructibility is essential: since allocators are not guaranteed to start at the same virtual

memory address in different processes, memory allocations are expressed in terms of offsets

from the start of their allocator and the relative structure of the allocator and its memory

pool must be identical between processes. This is complicated by alignment restrictions on

shared memory for different devices and systems. The minimum size of the local partition is

a page (typically 4kB). The granularity of shared memory varies (4kB on x64 systems, but

16kB on ARM), as does the required granularity of device memory.

The allocator is only reconstructible in a location that satisfies all these granularity re-

quirements. The shared mapping must end at an address that’s a multiple of the shared

granularity. Similarly, the device mapping must start at an address that’s a multiple of the

device granularity. Since the shared mapping and the device mapping are contiguous, then

the boundary between them must be at an address that is a multiple of the least-common-

multiple of both their granularities:

lcm(m,n) (2.1)

We make an initial reservation of unmapped virtual memory at approximate location x̂ of

size
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a+ b+ c+ lcm(m,n) (2.2)

That is, the collective sizes of the local, shared, and device mappings, plus a buffer zone

to align it correctly. A valid position satisfying all granularity constraints is guaranteed

to exist in any memory range of this size. If the boundary of shared and device memory

partitions must be at a multiple of lcm(m,n), then some modular arithmetic reveals that

our reservation x must start at

x̂+ lcm(m,n)− ((x+ a+ b) mod lcm(m,n)) (2.3)

Any virtual memory before this point or past the tail can be released. Virtual memory

within this range will be remapped to local, shared, and device memory in contiguous blocks

guaranteed to begin at an address that satisfies their granularity requirements.

Metadata Mem Domain 1 Mem Domain 2

Sub Count Avail Bits Locks Alloc ID Offset Size Alloc ID Offset Size

0 0 0 ∼ ∼ ∼ ∼ ∼ ∼
1 b11 b10 0x0000 0014 0x0000 D0F8 0x0001 4100 0x0000 001A 0x0000 04D0 0x0001 4100

3 b10 b00 0x0000 0015 0x0021 0A00 0x0000 0B00 ∼ ∼ ∼
3 b10 b11 0x0000 0014 0x0001 21F8 0x0001 4100 ∼ ∼ ∼

... ... ...

Table 2.1: Example Message Queue. Each column is 32 bits. Each row represents a message.

2.1.2 Message Queue

In a publish/subscribe application, topics can be modelled as queues of messages. This is

because execution of subscription processing may be delayed and a backlog of work may ac-

cumulate. In soft real-time systems, a queue can have a maximum length and stale messages

may be dropped.
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In our framework, these message queues exist as named shared memory files, with the name

taken from the topic name. In ROS 2, topics are named with strings. So a ROS 2 topic

named /perception/rear camera would be saved as a shared file with the name:

/dev/shm/ros2 hazcat.perception.rear camera

When using Hazcat outside of ROS 2, these message queues can be named arbitrarily. The

structure and example contents of a message queue are shown in Table 2.1. We describe the

formatting of this design, and the methods for interacting with it, including registration and

the publish / take calls.

Design of a Message Queue

Each message is stored in the queue in three parts: an allocator ID, the memory offset,

and the message length. The allocator ID is used to look up an allocator, which may or

may not be mapped already into the current process. These mapping operations typically

occur once near the beginning of a program’s run. After an allocator is mapped into the

process’s address space, the memory offset is added to the allocator’s starting address to get

the absolute address of the message. Each message may have multiple copies, one for each

memory domain. The entire message queue is then structured as a collection of arrays: one

per memory domain, plus an extra array for metadata.

The message length is a latent design decision for now. As mentioned in Section 2.1.1, we

only support fixed-size plain-old-data datatypes for messages, so specifying message length

is redundant, as it could be inferred from the topic. In the future, however, we plan to

implement support for zero-copy of dynamically sized messages.

Each entry in the metadata array contains 96 bits, as follows. 32 bits serve as a subscriber

counter to indicate if the message is still in use. 32 more bits serve as an availability map

for up to the 32 supported memory domains, where a 0 indicates the message hasn’t been

copied to this domain, and a 1 indicates it is ready for zero-copy reading. The last 32 bits

serve as locks for each memory domain to prevent redundant copy operations from colliding.

This allows up to 4 billion publishers and subscribers per topic, and 32 supported memory

domains. The zero-th memory domain will always be host memory, but the rest are assigned
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in order of registration and have no relation to the device type or device number mentioned

above in Section 2.1.1.

In addition to the message queue itself, there is header data (not illustrated) to track the

size of the message queue, the number of registered memory domains, and a global iterator

pointing to the most recent message index. Subscribers also store their own iterator to the

most recent message they haven’t yet read. The sub counter tracks how many registered

subscribers haven’t read the affiliated message yet. Whenever a subscriber takes a message

(covered in Section 2.1.2 on the take command), the sub count is decremented.

Publisher and Subscriber Registration

Before interacting with the message queue, a publisher or subscriber must register with

Hazcat. A publisher or subscriber can only be affiliated with a single topic which they request

during registration. The associated message queue will be mapped into the current process

(or created from scratch). Pursuant to the subscriber’s requested backlog, the message queue

may be resized. Other processes will be informed of this when they attempt to fetch data and

note the message queue’s self-reported size does not match the size of their own mapping,

at which point they remap the message queue with its larger capacity.2. We assume that

all publishers and subscribers are registered during an application’s initialization phase, so

these resizing operations will not be a part of steady state operation.

When the application terminates, publishers and subscribers are also required to unregister,

which is largely just decrementing an entity count. The last process to unregister the last of

the publishers and subscribers for a message queue will also destroy the message queue.

When resizing message queues for topics, we consider the design philosophy behind ROS 2

when developing Quality of Service (QoS) policies [60]. The general principle is that pub-

lishers offer a quality of service, and subscribers request a quality of service. Since we are

not concerned with packet loss over a network, the ability of publishers to retain a message

history for resending is unnecessary. Thus, only the requests of the subscribers are relevant

and the message queue should be the largest depth of all interested subscribers.

2In practice, this resizing would seldom occur, due to the shared memory object being page aligned.
A 4kB page is enough to hold tokens for well over 60 messages across 4 different memory domains. Few
applications would require more than this.
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Since shared memory objects must be page aligned, the minimum footprint is still large

enough to accommodate over 60 backlogged messages across 4 memory domains. 4 arrays

of 96 bit entries, plus another metadata array of 96 bit entries, makes 60 bytes per entry. A

4kB page then equates to 68 entries.

Publish command

The publish command is called by a publisher with a message to publish. First, it atomically

fetches and increments the index of the next available row. It then secures a lock on the

entire row, which ensures that any subsequent attempt to modify that row will block until

the current call finishes.

If there are any remaining messages in that row (due to wrap around of the message queue)

they are deallocated. This dropping of messages will only occur if there are best-effort com-

ponents in the system, which are assumed to be tardy and unaffected by the missed messages.

Any hard real-time tasks have to consider this deallocation as a source of interference when

computing their response time. In a well-designed application with only hard real-time com-

ponents, the message queue would never overflow, as an accumulated backlog exceeding the

quality-of-service setting is by definition a system failure. The alloc id, offset, and size fields

illustrated in Table 2.1 are updated accordingly and then the write lock is removed. Finally,

a signal is sent on the associated FIFO to inform other processes that a message is available.

Take command

The take command is called by a subscriber after being notified that a message was available

(a convenience, not a required step). First, the row for the oldest unread message is found. If

the subscriber is up-to-date and no new messages are available, the call returns NULL. After

inspecting the availability bitmask for the row, if the message is available in the subscriber’s

preferred domain, it will share the message and then prepare to return it. If the message

isn’t available in the message’s preferred domain, an available copy is identified and the entry

for that is fetched. The subscriber’s allocator then allocates a new message and performs a

copy operation as shown below in Listing 2.2.
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This new message copy is also stored in the row with the original, the availability mask is

updated accordingly, and the allocator ID and message offset are prepared to be returned.

Whether or not a copy occured, one last check is made. If this subscriber is the last to access

this message, the message queue will release its references to all copies of this message across

all domains, potentially deallocating some if no other subscribers hold a reference. Messages

with a non-zero reference count remain available to access for any subscriber that is already

running. When they finish, they also decrement their reference count and the last to finish

deallocates the copy in their particular domain. This does mean that subscribers frequently

use messages that are no longer tracked by the message queue. We do this because tracking

message ownership in the message queue requires locking a message reference as read-only

until all subscriptions return. These locks would provide an opportunity for best-effort

subscriptions to indefinitely block a real-time publisher trying to submit a message, which is

unacceptable, so we require our HA allocators to implement reference counting themselves.

alloc = lookup(sub.alloc_id)

src_alloc = lookup(entry.alloc_id)

msg = src_alloc + entry.offset

len = entry.len

here = alloc.allocate(len)

if (CPU == src_alloc.domain) {

alloc.copy_to(here , msg , len)

} else if (CPU == alloc.domain) {

src_alloc.copy_from(msg , here , len)

} else {

alloc.copy(here , src_alloc , msg , len)

}

Listing 2.2: Copy a message into the preferred domain when zero-copy conditions are not

met
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2.1.3 Message Lifecycle

As a recap to our system design, we cover the steps to create, use, and dispose of a message.

We conclude with comments on thread safety and steps to prevent race conditions for shared

memory. The steps to interact with Hazcat are 4-part: allocate, publish, take, and deallocate.

The allocate method is called on an allocator to create memory for the message, as detailed

in Section 2.1.1. During a component’s computation, the message is populated.

After the first component is finished, it calls publish, which places the allocator ID and

message offset in the relevant message queue, as described in 2.1.2.

When a second subscribed component has been informed of a message, it calls take. This

modifies the message queue as described in Section 2.1.2 and also affects the messages di-

rectly: it calls share on the message copy in the component’s memory domain, which incre-

ments the reference counter stored in the allocator. If this subscriber is the last to read the

message, it will also call deallocate on all the message copies, which decrements the reference

counter. This is akin to clearing the message queue’s references to the message copies.

The message won’t be garbage collected until this subscribed component calls deallocate one

more time to clear it’s own reference to the message, which is the final step.

In Section 2.1.1, we mention that the share and deallocate commands create a natural race

condition. This is resolved by the fact that share is only ever called from within the take

command, while the message is owned by the message queue. Calling deallocate from a

separate thread concurrently with the take command is always guaranteed to do nothing, as

the message queue itself retains a reference to the message. The only circumstance where

calling deallocate will truly deallocate a message is when the message is no longer tracked

by the message queue, so there’s no possibility of share being called on it simultaneously.

2.1.4 Design and Implementation

Any component-based framework using a CORBA or pub/sub communication model can

be modified to use Hazcat as its communication layer. Calls can be made to Hazcat to

register publishers and subscribers, create messages, publish to a topic, take from a topic,
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and finally deallocate messages. All that is needed is a translation layer to incorporate this

into a desired framework.

For sake of demonstration, we created an RMW to interface with ROS 2 systems and provide

these zero-copy benefits to ROS 2 applications. We also provided 2 allocators, one each for

CPU and GPU, both implementing a static ring buffer. Additional allocators can be added

readily in the future, such as one for the real-time dynamic memory strategy TLSF [88].

These allocators can be specified by the end developer when instantiating publishers or

subscribers. These are done through the use of subscription options and publisher options,

which each contain a field called rmw implementation payload. This mechanism can be used

to pass options specific to an RMW implementation, in this case a Hazcat allocator. If this

field is ignored, then a default CPU-based allocator is assumed.

When extending the Hazcat platform to new products and hardware, we make certain stip-

ulations for features the drivers must provide: an IPC mechanism to share device memory

allocations with unrelated processes; support for unified-virtual-addressing, including virtual

memory reservations; and mapping of physical memory to an explicit virtual address, subject

to page granularity constraints.

First, the hardware driver must implement some interprocess communication (IPC) mecha-

nism for its device memory. Any device memory allocated must be able to be accessed by any

unrelated process using a globally unique token. Depending on how this mechanism is im-

plemented, or whether it’s implemented at all, may naturally limit a product’s performance

and its viability to be used with Hazcat. As an illustrative example, CUDA now provides

shareable handles for IPC communication with their new driver API calls. As of CUDA

10.2, a developer can use cuMemExportToShareableHandle and cuMemImportFromShare-

ableHandle to create a handle allegedly shareable between processes. However, these calls

only work for related processes. The shareable handles are process-specific file descriptors,

and any attempt to translate these descriptors to another process, via the procfs and the

new pidfd getfd syscall, will inevitably fail. Why this happens is not explained in the current

CUDA documentation. The handle is intended to be used before a fork() operation, and is

not conducive to IPC between arbitrary processes.
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Additionally, the drivers for the hardware device in question must support unified-virtual-

addressing. Remapping allocators requires concatenating shared memory with device mem-

ory in a way that they appear as a single object. While their absolute location may vary,

their relative positioning must be intact between processes. Thus, once a shared memory

mapping is created for the allocator, its device memory pool must be placed in a particular

location in a process’s address space. If this ability is not present, we can’t make guar-

antees about the positional relationship between an allocator and its memory pool. These

guarantees are essential to correctly locate messages using nothing more than an offset.

Lastly, to avoid race conditions when claiming address space, the device needs a call to

reserve virtual memory. The allocator and device memory then can be mapped in without

another thread claiming adjacent virtual memory.

CUDA’s driver APIs support all the necessary virtual memory features mentioned above,

but lack an adequete IPC mechanism. The traditional CUDA API does not support address

reservations and explicit memory mapping, but does have IPC functionality that meets

our constraints. However, the two APIs provided are not compatible. We can conclude

that based on the aggregate functionality present in both APIs, NVIDIA hardware has

the capability to work with Hazcat, but as it stands, Hazcat cannot support CUDA on it

for independent-process workloads. The experiments below in Section 2.1.5 therefore use

components in a single process or in related processes.

2.1.5 Empirical Evaluation

Two Component Experiments

As a demonstrative example, we evaluate a sample application with two nodes. Each per-

forms a simple bilateral filter on a random 4k image, to serve as an arbitrary parallelizable

computation. These experiments were performed on a desktop system with an AMD Ryzen7

3700X CPU and an NVIDIA RTX 2070 Super. We measure the end-to-end latency and per-

form stacktrace sampling on this application while it runs on three different middlewares:

CycloneDDS, Iceoryx, and our Hazcat.
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(a) CycloneDDS Flame Graph
(end-to-end latency: 50.8ms)

(b) Iceoryx Flame Graph
(end-to-end latency: 27.2ms)

(c) Hazcat Flame Graph
(end-to-end latency:

13.7ms)

Figure 2.3: Stacktrace Sampling
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Figure 2.4: Two Component Experiment with Hardware Acceleration

Due to the limitations of CUDA IPC mentioned in Section 2.1.4, these nodes were run in the

separate threads in the same process, instead of in different processes, though we expect that

the performance differences with that other case would be negligible. We measure the steady

state operation of the system, so the first 1 or 2 samples were dismissed as outliers if their

runtime latencies differed significantly from the subsfequent samples. Such outliers were seen

in the Iceoryx uniprocessor example, as well as in all of the GPU examples (presumably due

to kernel loading).

Figure 2.1 illustrates the different operations performed by this two-component sample ap-

plication. Each operation type is detailed in Section 2, and mean timing information for

each variation is illustrated in Figure 2.4. Variation in the end-to-end latency for all three

middlewares is displayed in the violin graphs in Figure 2.5. These figures were created by

manually placing userspace probes in the application to measure timing at the entry and

exit points for GPU memory operations, GPU kernels, and the callback functions for each

component.

Stacktrace sampling can be found in Figures 2.3a, 2.3b, and 2.3c. The width of these flame

graphs has been normalized according to their respective end-to-end latencies, so the time

spent in each function can be better visualized.

Our tracing tools are unfortunately incapable of extracting stack traces from within CUDA

code, so any uses, be it from kernel execution or memory operations, are combined into

”libcuda”. We observe that CycloneDDS and Iceoryx spend roughly the same amount of
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Figure 2.5: End-to-end Latency Distributions for Two Component Experiment

time in the CUDA library, independent of their other sources of overhead. Hazcat, however,

spends much less time running CUDA code. Since the three are running the same kernel, we

can assume time spent on GPU computation remains constant, and the variation observed

is a result of reduced GPU memory operations.

We see this confirmed in Figure 2.4. Trials with Iceoryx see reduced latency compared

to CycloneDDS, despite running the same code. This is because of CycloneDDS’s worse

overhead and required memory copies between components (as dissected in 2.3a). Hazcat

runs slightly modified code, where the memory copies in userspace have been removed.

Almost all of the end-to-end latency under Hazcat is from GPU computation.

The Iceoryx and Hazcat variations both implement some type of zero copy and as a result

have reduced inter-component (and even intra-component) latency – the latter is due to

performing a publish call on the underlying middleware while the node is running. This call

performs a memory copy in CycloneDDS but has minimal overhead in Iceoryx and Hazcat.

CycloneDDS and Iceoryx incur the overhead of additional GPU memory operations when

using hardware acceleration. This is the primary performance benefit of Hazcat over Iceoryx:

eliminating unnecessary GPU memory operations.

Figure 2.5 shows density plots of the end-to-end latency of each experiment variation. The

distributions on the hardware accelerated workloads show that both Hazcat and Iceoryx

have tight lower bounds, highlighting that with them the best case is the typical case.
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Figure 2.6: Relative performance with randomized ROS graphs

CycloneDDS, with its higher overhead and excess inter-component memory copies, sees more

variation.

The most interesting finding is that Hazcat also has a tight upper bound. Iceoryx’s use of

GPU memory copies creates a source of latency jitter. Hazcat, on the other hand, has no

such issue, making it behave much more predictably compared to the other two frameworks.

Synthetic ROS Graphs

To demonstrate Hazcat’s performance in more complex workloads, we synthetically generated

98 ROS graphs with randomized message sizes for topics and randomized CPU or GPU

computation for nodes. Graphs ranged from 2 to 14 nodes, 1 to 17 edges, and had critical

paths ranging from 2 nodes to 5.

Each graph was run using Hazcat, Iceoryx, and CycloneDDS, and their end-to-end latencies

were measured. The first three samples were discarded from each run, to eliminate outliers

caused by transient effects during startup or shutdown.
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Different graphs will naturally have vastly varying end-to-end latencies. We observed mean

latencies ranging from 15 to 206ms. Since plotting all 98 graphs would be infeasible, measure-

ments were instead normalized. For each graph, performance was measured as the deviation

from the mean latency of that graph observed on Iceoryx. That is, if 3 runs of the same

graph on Iceoryx take 10ms, 12ms, and 17ms (mean of 13ms), each run will then be plotted

in Figure 2.6 as -3ms, -1ms, and 4ms. If a run of the same graph on Hazcat takes 8ms, it

will be plotted as -5ms.

Hazcat had a better mean performance than CycloneDDS for every graph. It performed

comparably (±10%) with Iceoryx for 60% of the graphs, and out-performed Iceoryx for 9%

of the graphs.

When examining individual graphs, we notice that Hazcat performs comparably to Iceoryx

in graphs dominated by CPU work, as well as graphs with wide work but a short span. Such

graphs comprised the majority of our test set. The largest performance benefits come when

multiple successive GPU nodes are chained together, and can benefit from the device-memory

zero copy.

There was a greater deal of temporal variance in Hazcat, which we ascribe to its experimental

implementation.

2.1.6 Conclusions and Future Work

The primary contribution of Hazcat’s heterogeneity aware zero-copy features for heteroge-

neous computing environments is that memory copies are only performed when data in one

memory domain is needed in a different domain. In all other cases, memory is recycled,

drastically reducing the worst case end-to-end latency of an application as well as removing

sources of nondeterminism.

In our synthetic benchmarks with randomized ROS graphs, we saw an average case speedup

of 1-73% over the unoptimized CycloneDDS middleware, depending on the graph in question,

with 27% being typical. When compared to Iceoryx, we observed anywhere between nearly

a 1.8x slowdown to a 2x speedup, again, depending heavily on the graph in question.
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The largest performance benefits are mostly seen when consecutive components in the ap-

plication all operate in the same domain. Even in the worst case, for an application using n

domains, we never saw more than n-1 copy operations per message.

We observe that in addition to performance gains in hardware acceleration workloads, our

framework has a decentralized design, which additionally reduces the requisite developer

knowledge, as there is no 3rd party daemon to launch and no ring buffers to configure. Built-

in defaults and runtime initialization allow it to perform well even when limited information

is provided about the application.

One obvious avenue of future work is to support a wider range of hardware. Here, we only

discuss CUDA based usage of NVIDIA hardware, but FPGAs are an important target for

future research as well. Given the aforementioned lapses in the CUDA drivers’ support of

IPC, we plan to investigate other approaches to support GPUs [30] [97].

As a motivating application to test Hazcat’s usefulness in the ROS 2 ecosystem, it is proposed

to modify the Autoware Realtime Benchmark [1] to provide CUDA support. Then, an

empirical comparison can be made between ROS 2 applications running on Iceoryx vs Hazcat.

Zero Copy with non-POD Message Types

Previously stated, the biggest competitor to Hazcat is Iceoryx, an interprocess zero-copy

communication middleware. One of the main limitations of Iceoryx is only being able to

support Plain-Old-Data (POD) message types3. That is, data allocations with a fixed size

known at allocation time and no recursive elements, as is typical with object-oriented pro-

gramming. Currently, Hazcat also shares this limitation.

The ability to allocate an object and then decide the size of a member array at a later

point has obvious benefits from a programatical standpoint. But the ability to support

a message comprised of multiple allocations has an additional benefit when working with

device memory: the ability to spread a message across memory domains.

3In the time between when the Hazcat paper [13] was published and when this dissertation was written,
the developers of Iceoryx have attempted to address this exact feature and determined there was not sufficient
industry interest to justify complicating their design. This suggests support for non-POD message types is
at present primarily of academic interest, but this discussion is left in the dissertation for completeness.
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For instance, when storing an image in ROS 2, the message type contains not only the image

data, but also a header, containing metadata such as dimensions and encoding information.

If the image data is to be processed on a hardware-accelerated device, this header data would

provide valuable information to pass to the kernel launch, or determine whether the kernel

should even be executed.

Enabling these kind of hybrid-compute applications motivates Hazcat as a useful player in

the middleware space.

This basic principle of storing data across different memory domains already exists, in the

form of NVIDIA Isaac [94]. However, it is limited to the CPU+CUDA domain, only supports

ROS (2) applications, and the mechanism is abstracted behind a proprietary NVIDIA library

so it can only be used with compute kernels also provided by the NVIDIA Isaac API.

Implementation in ROS 2

Messages in ROS 2 are defined in a YAML-style file which are interpreted and converted

into a code representation via rosidl [59]. A variation of rosidl would need to be developed

to convert these messages into a hybrid-memory format. Currently, arrays in ROS 2 are

represented with the std::vector class, which would need modifications to work with device

memory and the Hazcat framework.

YAML already supports comments, so that can be extended to support pragmas. In this

way, it can be indicated which fields in a message should be in host memory and which can

be in device memory. For simplicity, the scope of work in this dissertation is restricted to

only a single hardware acceleration device per message.

Without a HWA pragma, a message is assumed to exist entirely in one domain, and Hazcat

will copy it to other domains as requested. When a HWA pragma is present, only the

indicated fields will be copied by Hazcat. All other fields (e.g., headers and metadata)

remain strictly in host memory. The field with the HWA pragma typically will be a large

array.
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2.2 Allocators for Device Memory

The Hazcat framework requires implementing a diverse set of allocation algorithms for device

memory. Iceoryx only accomodates a statically allocated buffer array, but many applications

require dynamic memory allocation.

The field of dynamic memory management could be said to have been started by Knuth [76].

Some 30 years of progress is well summarized by Wilson and Johnstone [69, 120] in their

comprehensive survey. Since then, further improvements have been made [38, 64, 88, 107],

but overall the subject can be considered to be highly mature.

However, we challenge a prevailing assumption in the literature over the last 50 years which, if

reconsidered, necessitates a fundamental reevaluation of many classical memory management

algorithms. We pose a model where these allocation algorithms run on a host system but

manage device memory. This model is exemplified in accelerated applications without unified

memory that copy data in and out of device memory before and after a kernel call. Managing

device memory from the host device incurs the following constraint: the allocator can’t read

the memory it is managing.

This means we are unable to use boundary tags, a concept first introduced in Knuth [76]

that has been ubiquitous in nearly every allocation algorithm. In this section, we propose

alternate designs to work around this constraint, and discuss in general the implications

of this system model. Most existing memory management algorithms include metadata as

headers or footers within allocated blocks. In contrast, our system model assumes that

the allocator is running on a host system, managing device memory. This may occur, for

example, if part of a computation is offloaded to a GPU or FPGA device while the rest

of the computation runs on a multicore processor. This in turn implies that the compute

device cannot (conveniently and efficiently) access the memory it manages. Therefore, any

data needed by the allocation algorithm cannot be stored in its allocated blocks.

We motivate this system model by considering the usecases surrounding how device memory

is managed. In the current state of the art, memory allocation/deallocation is either done on

the peripheral compute device or in (often proprietary) device drivers. This causes memory

allocators to be treated as fixed black boxes.
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However, different applications may have differing needs for how to manage their memory.

The most optimal allocator may be high performant, real-time constrained, or have domain-

specific characteristics catering to the application. Fixing the allocator choice in proprietary

drivers and hardware denies developers the choice to optimize this aspect of their systems

through selective mapping of portions of the application and its supporting libraries to differ-

ent computational devices. Examples of such applications include drone cinematography [24]

and real-time hybrid simulation experiments in earthquake engineering [36].

For our work, we assume that existing hardware and drivers are used to allocate arbitrarily

large blocks of memory, but finer-grained memory allocation is then done in userspace by

the host machine. As was mentioned previously, these allocators are constrained by their

inability to read the memory they are managing and cannot store metadata in allocated

blocks. We present alternative algorithms that address this constraint.

First, in Section 2.2.1 we present a brief survey of existing dynamic memory allocation

algorithms. In Section 2.2.2, we propose alternative measures to overcome the constraint of

being unable to read managed memory. In Sections 2.2.3 and 2.2.4, we present our updated

alternative allocation algorithms. We compare the performance of one of our algorithms to

the default CUDA memory allocation functions in Section 2.2.5. Finally, we conclude in

Section 2.2.6 with thoughts on implementations and usecases for this work.

2.2.1 Background and Related Work

Before introducing our new algorithms, we present a brief survey of existing memory alloca-

tion algorithms. Broadly speaking, these fall into 4 categories [69].

Sequential Fit

Free and allocated blocks of memory are linked together using header information

within the allocated block itself. The resulting structure is called a free list. Examples

include first fit, next fit, and best fit.

Segregated Lists

Portions of free data are grouped by size to aid in the lookup of a suitable block,

including simple segregated storage, segregated fit, and TLSF.
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Buddy Systems

Free blocks are only allowed to coalesce with a preassigned buddy, generally strictly

sized in powers of 2. Examples include binary buddy [98] and double buddy [98,122].

SIMD Allocators

Allocators may be designed for massively parallel programs [64,107,121] where multiple

threads may be requesting memory simultaneously. These typically are used in device

code. In this dissertation, we consider memory that is preallocated by host code, prior

to a kernel launch.

Sequential Algorithms

Although there are a multitude of sequential algorithms, they all boil down to the same

idea: all free blocks are kept in a free list, which is iterated through until a suitable block is

identified for allocation. The only difference is what qualifies as a ”suitable block”.

The following are some of the most common sequential algorithms.

Best Fit

The entire free list is iterated and the smallest block that is greater than or equal to

the requested size is used. The search is terminated if a candidate block is exactly of

the requested size.

First Fit

The first block that is large enough to accommodate the requested size is used.

Next Fit

Like first fit, except each traversal of the free list resumes from the last position, instead

of starting over from the beginning.

In real world scenarios, tests have shown that next fit performs the best in terms of allocation

time, although it suffers a fragmentation penalty compared to the others.
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Segregation Algorithms

In segregation algorithms, multiple free lists are maintained for different size classes. There

are three primary types.

Simple Segregated Storage

Under this algorithm, every allocation request is rounded up to the next power of two.

Free blocks are not split, and freed blocks are not coalesced. If a requested allocation

has no available blocks in the free list for its size class, then a new block is created

from the free heap.

Segregated Fit

This variation allows blocks to be split. Since not all blocks within a given size class

are the same size, allocation requests are always serviced using the class size that is

one degree of magnitude larger.

Since all blocks in the larger class size are guaranteed to be large enough to accom-

modate the request, it is unnecessary to perform iteration. These free lists are then

treated like queues, only interacting with the front element. This prevents the frivolous

search of a free list with no viable candidates, and reduces the allocation time to O(1).

Additionally, it can perform deallocation in O(1) time, making it highly suitable for

real-time systems, which require bounded execution.

One commonly used implementation is Doug Lea’s Malloc [82]. It is a segregated fit

algorithm that uses a combination of logarithm and linear spacing between its bins,

achieving very low fragmentation in real-world evaluations [69]. It serves as the basis

for the default allocator in the C programming language.

Two-Level Segregated Fit (TLSF) [86–88]

Two-level segregated fit builds on the idea of segregated fit. As with segregated fit,

TLSF has logarithmic size classes, but each size class is further divided into linear size

classes. This retains the O(1) allocation and coalescence time complexity of segregated

fit, but drastically reduces the fragmentation problem.
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Buddy Systems

Buddy Systems [75, 98] can be considered a subclass of segregation algorithms [69], in that

memory is sorted into size classes. However, they bear the additional constraint that freed

blocks cannot be coalesced with any neighbor, only with a preordained buddy.

When an allocation request is made, it is rounded up to the size class. The heap is then split

into two buddy blocks. The first is split further, and so on recursively until the desired size

class is created. Like with segregated fit, each size class has a free-list allowing allocation in

O(1) time.

After deallocation, if two buddies are both free, they are coalesced. This operation can be

performed recursively up the binary heap, possibly taking O(logn) time.

This larger deallocation time complexity means that applications with real-time constraints

are often better served by a conventional segregated fit algorithm (such as TLSF).

As with simple segregated storage, the commitment to block classes at strict sizes by this

algorithm can result in a great deal of internal fragmentation within allocations. This can

be assuaged somewhat by variants to the algorithm, listed below.

Binary Buddies [76,98]

The traditional and simplest implementation. It operates exactly as described above.

Double Buddies [98,122]

To resolve the internal fragmentation issue of conventional buddies partially, double

buddies keeps two heaps with staggered class sizes, e.g., one heap with sizes of 2, 4, 8,

... and another with 3, 6, 12, ...

Fibonacci Buddies [63]

This approach assumes the heap size is a Fibonacci number. Since every Fibonacci

number is the sum of two other Fibonacci numbers, blocks can be split recursively. This

split is uneven, helping address the internal fragmentation caused by using strictly

powers of 2. The ratio between consecutive size classes using Fibonacci buddies is

approximately ϕ ≈ 1.618.
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SIMD Allocators

This is a broad class of allocators designed for use specifically in SIMD systems, where

many allocation requests may be made in parallel, creating risk for contention. A survey of

currently available work is presented in [121].

Such allocators are often designed to avoid or eliminate locking overhead and are typically

useful when threads in a GPU need to allocate small amounts of memory simultaneously in

device code. This doesn’t align with our model of host-based allocation code, and caters to

a different use-case.

Our work is useful for parallel applications that are highly heterogeneous, intermixing both

unaccelerated and accelerated tasks. The accelerated tasks operate on memory allocated

prior to kernel launch. In such a system, all the memory allocation calls, both for host and

device memory, would be done from host code.

Meanwhile, these SIMD allocators require execution of device code to run, leaving them out-

side the scope of the intersectional memory model we put forward. Furthermore, it has been

demonstrated [125] that invoking device calls that manage CUDA memory causes implicit

device-wide synchronization operations, impacting unrelated processes on the system. This

motivates avoiding device calls where possible, and managing device memory on the host

achieves this.

2.2.2 Alternatives to Free Lists

This work explores a model in which the host device manages allocation of device memory.

This prevents the allocator from reading the memory being managed, which presents new

challenges not encountered in traditional memory allocation schemes. A key hurdle is that

we cannot use boundary tags, a standard approach that was first mentioned by Knuth [76].

The traditional usage of boundary tags is illustrated in Figure 2.7. A free list is formed by

a linked list of blocks that are available for reuse. The header points to the next element in

the free list, and the footer points to the header of the same block, which enables coalescence

between two adjacent blocks in O(1) time. After a block is freed, one can subtract the footer

size from the block’s address to obtain the address of the header of the prior block. From
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Figure 2.7: Demonstration of Boundary Tags

there, one can check if that prior block is in the free list, and if so, the two will be coalesced.

The next block in the free list also can be checked to see if it’s adjacent in memory, possibly

coalescing a total of three blocks.

These free lists are used in all Sequential Fit and Segregated Fit algorithms and a replacement

mechanism will be needed to implement these in device memory.

Arrays and Hybrid Array Lists

Array-based implementations of a free list for Sequential Fit algorithms using sub-pagesize

allocations have high overhead, due to the potentially large number of small allocations.

If we assume the smallest allocation size is 8 bytes, and an additional 8 bytes is needed to

point at the free block, then the allocator would need an amount of host memory equal to the

device memory it is supposed to be managing. However, this is true even for conventional

sequential fit allocations. Between the header and footer boundary tags, the worst case

overhead is potentially 75%.

With an array-based approach, we track all blocks, free or in-use. So, each allocation of

device memory only needs a single word (8 bytes) as overhead in host memory. We assume

that we can spare a bit to indicate whether the block is free or not. Naively, allocation

and coalescence would be O(n) operations, corresponding to array insertion and deletion

respectively, but we can reduce this by using Hybrid Array Lists (HALs) [101].
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Our implementation is informed from prior literature [101], and detailed in Appendix A,

which describes insertion, removal, and searching of a HAL. Two separate HALs are main-

tained: one to track free blocks, and another to track in-use blocks.

Algorithm 1 Memory Allocation

Require: used list tail, free it, size ≥ 0
1: addr ← free it.addr
2: if free it.size > size then ▷ Split entry to only use space needed
3: free it.address← free it.address+ size
4: free it.size← free it.size− size
5: else
6: remove(free it)
7: end if
8: it← search(used list tail, addr)
9: insert(it+ 1, {addr, size})
10: return addr

The allocation algorithm (Algorithm 1) assumes that a candidate free block already has been

identified: see Section 2.2.3 for discussion of that selection process. Given a candidate block

in the free list, it must be moved to an in-use list, and possibly may be split if the block is

larger than the request.

The free list is also guaranteed always to have at least one entry: the heap itself.

During deallocation (Algorithm 2), a block is removed from the in-use list and added to

the free list. The algorithm will check the prior and subsequent blocks in the free list and

perform coalescence if it is possible.

Partial deallocation is supported, e.g., freeing the last 2kB of a 10kB block. In the event of

a partial deallocation, the in-use block will be shrunk, and otherwise it is simply removed

from the in-use list.

When inserting into the free list, the previous and subsequent (left and right) blocks are

checked and coalesced if either (or both) is adjacent to the block being inserted.
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Algorithm 2 Memory Deallocation

Require: free list tail, used list tail, addr ≥ 0 ▷ Find chunk in used list
1: it← search(used list tail, addr)
2: size← it.size ▷ Remove the chunk from the used list (or shrink it, in the case of

partial deallocation)
3: if it.addr = addr then
4: remove(it)
5: else
6: it.size← addr − it.addr
7: size← size− it.size
8: end if
9: left← search(free list tail, addr)
10: right← left+ 1 ▷ May be past-the-end
11: if left.address+ left.size ≥ addr then
12: if right.address ≤ addr + size then ▷ Calculate size of left to coalesce all 3, and

remove right
13: end← right.address+ right.size
14: else ▷ Calculate size of left to coalesce just 2
15: end← addr + size
16: end if
17: left.size← end− left.address
18: else if right.address ≤ addr + size then ▷ Calculate new size and address of right
19: right.size← right.address+ right.size− addr
20: right.address← addr
21: else ▷ Insert block without coalescing
22: insert(right, {addr, size})
23: end if
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Bitmasks

Assuming O(n) searches are acceptable, one way to minimize overhead is through the use of

bitmasks. In this approach, device memory is divided into its smallest allocatable size (e.g.,

8 bytes), and the only overhead is a single bit in host memory to indicate whether that block

is free or not. If we consider an allocation size lower bound of 8 bytes to be the worst case

scenario, this creates an overhead of only 1.5% (one bit for 8 bytes). That produces 16MB

of overhead for a gigabyte of device memory.

Allocation is done by finding a contiguous string of set bits in the bitmask corresponding to

the desired size. For example, to allocate 1kB of memory, it is necessary to find a string of

128 bits that are all ones, incurring an O(n) cost for allocation, on the order of the address

space size. The clz and ffs hardware instructions can be used to accelerate a bitsearch

such as this.

All these bits then must be set to zero to indicate their corresponding blocks are in use.

When the block is freed, they are all returned to ones (coalescence is implicit here). This

means allocation and deallocation operations also incur an O(s) cost, on the order of the

block size.

Bitmasks have low overhead and relatively high time complexity on the order of allocation

size. Because of the low overhead, a potential use-case is to use bitmasks to manage a pool of

small memory chunks, either of the same size (as in an object pool) or commingled varying

sizes, as described above.

We can optimize the allocation search complexity by using the next-fit method. Prior

work [10,76] has shown that next-fit improves on temporal performance over other sequential

searches.

Hash Tables

Another strategy is to use a hashtable, keyed by device memory address, to store all the

information typically found in the header and footer of an allocated block.
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The traditional algorithms for free-list traversal and coalescence operation would need to be

modified to accommodate an extra step to look up data in the hashtable. The in-use blocks

would need to be tracked in the hashtable as well, as they also have necessary information

in their header and footer.

With the use of hash tables, we aim to achieve O(1) allocation and deallocation, so co-

mingling free and in-use blocks will not be a major performance concern.

The key for the hash table is the address of a block. The value contains (i) the block size, (ii)

the address of the next block in a free list, (iii) the address of a previous block in a free list,

and (iv) the address of the previous block adjacent in address space. Thus we can create,

in effect, free lists that span across a hash table. The ability to maintain multiple free lists

easily is useful for segregated fit algorithms.

The primary downside of this approach is the space overhead. Each entry contains 6 words

(the key, block size, two references for a doubly linked list, one reference for a prior adjacent

block, and a reference for a separate list linking collisions in the hash table). This means

that in the worst case scenario, minimum allocation size of one word, the overhead is ∼
83%. This is comparable to the worst case overhead of 80% seen in doubly linked free

lists in conventional host-only algorithms. However, we only recommend this approach for

applications with a fewer small allocations, such as those with a larger minimum block size,

or any applications for which segregated fit algorithms are applicable.

Comparison

Below is a comparison of the three different strategies for replacing free lists. For allocation

time of HALs and Hash Table lists, we ignore traversal when considering allocation. When

these approaches are used in segregation algorithms (discussed later in Section 2.2.4), they are

often treated as stacks, with the head of the list always being a viable candidate. Bitmasks

do not have this benefit. Searching for an allocation candidate will always require traversal

of the memory space.
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Approach WC Overhead Allocation Coalescence

HALs 50% O(1) O(n/m + m)

Bitmasks 1.5% O(n) O(s)

Hash Table 87% O(1) O(1)

n is the size of memory being managed. m is the size of an array block in a hybrid-array-list.

s is the size of the allocated block.

Hybrid array lists are distinguished by their unbounded deallocation time. Even if an al-

location algorithm doesn’t require traversal to allocate a block, it may require traversal to

coalesce. Since these hybrid array lists are intended to be sorted, entries are not guaranteed

to remain in the same location in the list.

Allocation takes constant time, assuming all free blocks are eligible candidates, as is the

case in segregation algorithms, which maintain multiple free lists for different size classes.

Under this assumption, the last address in the list can be removed, which is as simple as

decrementing a counter in the corresponding block. If the list must be traversed, as is the

case of sequential algorithms (discussed in Section 2.2.3), then allocation becomes a O(n/m

+ m) process. This speed up in traversal, combined with lower overhead, makes HALs an

ideal replacement for free lists where sequential algorithms are concerned.

Bitmasks always a require a traversal to identify an allocation candidate. This can be sped

up substantially using the find-first-set command, which can search for 1 bit in a 64-bit word

in a single machine-level instruction. This is still O(n), but offers a reasonable strategy for

managing smaller object pools.

Storing linked lists in Hash Tables incurs a substantial overhead, so it is not recommended

for smaller allocations. It does permit constant-time algorithms to retain their constant-time

execution, which is crucial for real-time systems. This makes hash table stored lists the ideal

replacement for free lists where segregation algorithms are concerned.
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2.2.3 Sequential Algorithms

All sequential algorithms are essentially the same, except for their stopping criteria. Below

we include an algorithm for using best fit on device memory with hybrid array lists. This is

followed by a description of the modifications needed for next-fit and first-fit.

Algorithm 3 Best Fit Allocation

Require: free list tail, used list tail, size ≥ 0
1: it← free list tail
2: candidate← it
3: it← it+ 1
4: while it.size ̸= size and it ̸= free list tail do
5: if it.size < candidate.size and it.size ≥ size then
6: candidate← it
7: end if
8: it← it+ 1
9: end while ▷ Invoke Algorithm 1 on candidate block
10: return allocate(used list tail, candidate, size)

Best-fit tries to find the smallest block that is large enough to accommodate the requested

size. If a block with an identical size is found, the search can stop. However, it often requires

traversing the entire list.

Contrarily, next-fit and first-fit select the first free block that is greater than or equal to the

requested size. Next-fit is distinct from first-fit because it resumes the next allocation search

where the last one left off. First-fit is memoryless and always restarts from the beginning of

the free list.

All of the sequential algorithms use the same deallocation process, illustrated in Algorithm

2.

2.2.4 Segregation Algorithms

Segregated Fit

In segregated fit, multiple free lists are maintained in size buckets for different powers of

2. Unlike sequential fit, the lists aren’t searched. Instead, the first block is always selected.
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Algorithm 4 Allocate memory in segregated fit

Require: free lists, bitmask, hashtable, size ≥ 0
1: requested bins← 1≪ ⌈log2(size)⌉
2: order ← ffs(requested bins)

▷ Lookup head of candidate list in hashtable
3: it← ht[free lists[order]]
4: free lists[order]← it.next free
5: it.free← False ▷ Split off surplus portion of block
6: if size < it.size then
7: new block.size← it.size− size
8: new block.free← True
9: new block.addr ← it.addr + size
10: new block.prev adj ← it.addr
11: new block.prev ← 0
12: it.size← size ▷ Place new block at head of free list in its size class
13: bin idx← ⌊log2(new block.size)⌋
14: new block.next← free lists[bin idx]
15: new block.prev ← 0
16: ht[new block.next].prev ← new block.addr
17: free lists[bin idx]← new block.addr
18: bitmask ← bitmask | (1≪ bin idx)
19: ht[new block.addr + new block.size].prev adj ← new block.addr ▷ Insert into the

hashtable
20: ht[new block.addr]← new block
21: end if
22: ht[it.addr]← it
23: return it.addr
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Given a requested size, it is rounded up to the nearest order of magnitude, and then the first

block from that list is selected. This means (assuming no empty free lists) the selected block

may be nearly 4x larger than the requested size, causing 75% fragmentation, as discussed in

prior literature [69, 120].

All lists are initialized pointing at a null block: an invalid block in the hashtable is meant to

indicate the end of a free list. Accompanying this array of lists is an availability bitmap that

can indicate which lists are non-empty. If the free list for a desired size class is empty, the

next eligible list can be found by using the find-first-set (ffs) bit operation on the bitmap.

Our implementation stores the free lists in a hashtable, as discussed in Section 2.2.2. Algo-

rithms 4 and 5 show pseudocode for allocation and deallocation, respectively.

Two-Level Segregated Fit for Device Memory

Two-Level Segregated Fit [86–88] (TLSF) is a real-time dynamic memory allocation algo-

rithm. Its primary benefits are reduced fragmentation and O(1) allocation and deallocation.

It is an extension of segregated fit, dividing class sizes not only logarithmically, but also

linearly, in a two-tiered system.

The allocation and deallocation steps are functionally the same, except the lookup step

requires consulting 2 bitmasks. One is logarithmic and functions just as detailed in Algorithm

4 and Algorithm 5. TLSF differs in that this points at another bitmask which subdivides

the space linearly, as illustrated in Figure 2.8. This tier then points to a free list of blocks in

that size class. If the free list is non-empty the linear bitmask will have a corresponding 1

set. If the linear bitmask is non-zero, then the logarithmic bitmask will have a corresponding

1 set.

Free list manipulations are done the same way as in segregated fit, so Algorithms 4 and 5 only

need to be modified to account for this two-tiered lookup process and bitmask manipulation.
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Algorithm 5 Deallocate memory in segregated fit

Require: free lists, bitmask, hashtable, addr ≥ 0
1: it← ht[addr]
2: left← ht[it.prev adj]
3: right← ht[it.addr + it.size]
4: if left.free then
5: if right.free then ▷ Coalesce all 3, erase it and right
6: left.size← left.size+ it.size+ right.size
7: ht[right.addr + right.size].prev adj ← left.addr ▷ Update bitmask
8: if right.prev = right.next then
9: unset bit← 2⌊log2(right.size)⌋

10: bitmask ← bitmask ∧ ¬unset bit
11: end if
12: remove(right)
13: else ▷ Coalesce left block, erase it
14: left.size← left.size+ it.size
15: right.prev adj ← left.addr
16: end if
17: if it.prev free = it.next free then
18: unset bit← 2⌈log2(it.size)⌉

19: bitmask ← bitmask ∧ ¬unset bit
20: end if
21: remove(it)
22: it← left
23: else if right.free then ▷ Coalesce right block
24: it.size← it.size+ right.size
25: ht[right.addr + right.size].prev adj ← it.addr ▷ Update bitmask
26: if right.prev = right.next then
27: unset bit← 2⌊log2(right.size)⌋

28: bitmask ← bitmask ∧ ¬unset bit
29: end if
30: remove(right)
31: end if ▷ Put coalesced block in free list in its size class
32: bin idx← ⌊log2(it.size)⌋
33: it.next← free lists[bin idx]
34: ht[it.next].prev ← it.addr
35: it.prev ← 0
36: free lists[bin idx]← it.addr
37: it.free← True
38: ht[it.addr]← it
39: bitmask ← bitmask | 2bin idx
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Figure 2.8: TLSF Data Structure [87]

Hybrid Allocators and Object Buffers

Hybrid approaches also may be employed, using object buffers to manage object pools for

allocations smaller than a page (<4kB), and segregated lists for larger allocations.

Object pools allow for the efficient allocation of vast amounts of small allocations, but are

not a practical approach for larger allocations. A hybrid approach can permit the best of

both worlds.

It is also important to consider the practical use of such a hybrid approach in this context. A

host-based allocator for device memory is unlikely to allocate large numbers of small objects,

but rather large memory blocks that are passed to a kernel call for a hardware-accelerated

device. If small allocations are created, they would be intermediary memory allocated by

device code, likely using a SIMD allocator such as XMalloc [64] or ScatterAlloc [107]. These
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Figure 2.9: Latency of malloc and free

Figure 2.10: Memory usage during bench-
mark

allocators are designed to handle many allocation requests in parallel without the need

for locks, a usecase that doesn’t apply to the host-based model we have presented in this

dissertation.

So, our usecase would be best served by limiting the smallest granularity to a medium sized

value, such as 4kB, and exclusively using a segregated fit algorithm.

2.2.5 Evaluation

Evaluating the nuanced use cases that this work targets is challenging. SIMD allocators

do not offer a proper target for comparison since our allocators are run from the host and

are not intended for parallelization. Many good memory allocator benchmarks also exist for

host memory [83], including real-world applications. However, they too are unsuitable for

comparison since the device memory we are allocating is inaccessible.

Instead, we compare our work to the default CUDA allocator. We adapted the malloc-

large benchmark from the MiMalloc benchmark suite [83] to use an implementation of our

segregated fit algorithm. This algorithm randomly allocates and frees blocks of 1kB and

16MB in size, several thousand times.

As a baseline, we also ran the benchmark with ordinary calls to cudaMalloc and cudaFree.

The order and size of the alloc and free operations was consistent between our work and the

baseline. Latency comparisons between the two are shown in Figure 2.9.
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Our work outperforms the default CUDA allocator by 2 orders of magnitude. There are some

outliers during program initialization where the segregated fit malloc can take upwards of

2ms, but these disappear as the program settles into a steady state.

We measure fragmentation in our experiments (Figure 2.10) by tracking not only the memory

in use by the benchmark, but also the physical device memory provisioned to the benchmark

process. In our segregated fit allocator, we observe a roughly 50% fragmentation ratio. This

is consistent with prior work [69] on segregated fit. A Two-Level Segregated Fit allocator

would see improved fragmentation [88].

2.2.6 Conclusion

We note that prior work on dynamic memory allocation relies on free lists and boundary

tags. We’ve posed a heterogeneous system model where memory is stored on one device

and managed from another. After observing that existing algorithms are no longer applica-

ble, we’ve provided alternatives to free lists and updated versions of classic sequential and

segregated fit algorithms.

An implementation of our segregated fit algorithm was tested against conventional calls to

cudaMalloc and cudaFree. It was found that, after a warmup period, our work consistently

outperformed the CUDA calls by two orders of magnitude. This is mainly due to its implicit

and efficient memory recycling.

We do not claim to outperform established GPU allocators [121] at scale, nor to address

their highly parallelized use-cases. However, in specific circumstances where kernels are not

expected to allocate memory and diverse accelerated computation is combined into a large

heterogeneous application, performance benefits can be achieved by managing memory on

the host. It is unnecessary to invoke device calls to free memory, and instead it can be

recycled dynamically.
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Chapter 3

ROS 2 Scheduler

The previous chapter focused on data movement between components. This chapter turns

to the scheduling of those components. We specifically focus on the scheduler for ROS 2, a

robotics framework introduced in Section 1.1.

The ROS 2 scheduler, called an executor, exists in the topmost layer of the ROS 2 stack,

rclcpp. The default executor, often referred to as the ‘SingleThreadedExecutor‘, has several

characteristics and limitations documented in prior work [21,29,110,113,114].

• Ready Set: It uses a mechanism called a ready set to hold callbacks ready for execu-

tion. The ready set is not aware of individual instances of callbacks releases. It only

indicates if a callback is ready for execution, and not how many instances are in the

backlog.

• Polling Points: The ready set is populated only at specific polling points. Once

populated, the executor processes one instance of each callback from the set before

polling again.

• Processing Window: The interval between two polling points is known as the pro-

cessing window. Callbacks becoming ready during this window must wait until the

next polling point, potentially leading to significant delays and priority inversions,

as lower-priority callbacks already in the ready set execute first. At most, only one

instance of a given callback can be processed during this window.

• Scheduling Policy: It employs a round-robin policy within the ready set, with a

static bias favoring timer callbacks over subscription callbacks, and only executing each

callback once per processing window, regardless of the number of instances released.
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This inherently fixed-priority scheme, combined with the blocking behaviour caused by pro-

cessing windows, makes it difficult to provide strong real-time guarantees—especially for

complex applications.

Existing work [29,110] has determined that ROS 2 applications, due to their pub/sub archi-

tecture, can be modeled as DAGs. When data arrives at a topic, all of its subscribers have

attached callbacks that execute in response. These can be modeled as atomic tasks within

the DAG. They may themselves publish to additional topics, triggering other callbacks. This

can form a chain of execution. When there’s multiple subscribers to a single topic, the chain

branches, forming a DAG.

Aforementioned work by Casini [29] and Tang [110] provides a response time latency for

this graph, and presents critiques of ROS 2’s scheduler design. Since then, work has been

done by other researchers [20,33,105,106] to improve these flaws and present new scheduler

designs.

In 2023, the events executor [65] was introduced in ROS 2, replacing the wait set with an

events queue and passing only one job to the processing window at a time. This eliminates

the issues associated with the processing window, and provides a basis for a scheduler that

is compatible with the classical real-time scheduling model of periodic task systems, de-

tailed later in Section 3.1.1. Furthermore, the events queue can be replaced with a custom

implementation for arbitrary scheduling policies.

This chapter uses content from two papers, both written in collaboration with TU Dortmund.

The first paper [111] explores light modifications that can be made to the events executor to

make it compatible with the classical real-time scheduling model of periodic task systems,

and then provides an response time analysis for applications that use the events executor.

The second paper [15] explores more generic applications by incorporating graph aware

scheduling into decisions made by the events executor.

3.1 Reconciling ROS 2 with Classical Real-Time

Scheduling of Periodic Tasks

This work addresses the following fundamental question:
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Is it possible to use the events executor in ROS 2 in a manner that is compatible
with the classical real-time scheduling theory of periodic task systems, in which
every high-priority task can only be blocked by at most one lower-priority task,
and a job is released every time the task period is reached?

Our answer is yes, but only under certain conditions.

In this work, we uncover these conditions and show that any priority-based, non-preemptive

scheduling strategy, can be realized with only slight modifications of the events executor,

including Fixed-Priority (FP) and Earliest-Deadline-First (EDF) scheduling. Our solution

is easy to apply since it requires only minor backend modifications of the events executor,

which is natively included in ROS 2. With our solution, classical results from the real-time

systems literature for priority-based, non-preemptive scheduling of periodic tasks can be

applied.

Our Contributions:

• We present modifications to allow priority-based scheduling for the events executor in

Section 3.1.4.

• We state the conditions that make our proposed executor compatible with priority-

based, non-preemptive scheduling theory for periodic tasks in Section 3.1.5. Further-

more, we demonstrate how to apply analytical results in the literature to compute the

worst-case response time and the end-to-end latency for the proposed ROS 2 scheduler.

• While the previous sections focus on timer tasks (i.e., tasks with periods), we extend

to subscription tasks (i.e., tasks triggered by other tasks) in Section 3.1.6 and discuss

the need for dedicated interfaces enabling the prioritization of subscriptions in ROS 2.

• In Section 3.1.7, we evaluate our findings, showing compatibility with the classical

real-time scheduling theory and our proposal’s benefits. We show the applicability of

response-time bounds from the literature and significant improvements to end-to-end

latencies in many cases.

In Section 3.1.1, we outline the different characteristics of typical priority-based schedulers

and the default ROS 2 executor. The events executor is introduced in Section 3.1.2. We

define the problem this chapter investigates in Section 3.1.3.
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Figure 3.1: Scheduling mechanisms.

3.1.1 Classical Schedulers and Executors in ROS 2

In this section, we introduce the scheduling mechanisms for periodic tasks in classical real-

time scheduling and the default ROS 2 executor and highlight their differences. To that end,

we use a running example of three tasks τ1, τ2 and τ3. Task τ1 should release a job every 10

time units, with an execution time of 3 time units. Tasks τ2 and τ3 should each release a job

every 30 time units, with an execution time of 10 time units per job.

Classical Priority-Based Scheduler

The scheduling mechanism of the classical real-time scheduler is depicted in Figure 3.1a.

Specifically, it consists of a releaser 4 and a scheduler, where the releaser inserts jobs into the

ready queue and the scheduler decides which job in the ready queue should be executed.

The releaser can be implemented as a timer interrupt service routine. Specifically, a timer

interrupt is triggered for each system tick, and the releaser decides whether to release a job

of task τi ∈ T, given a set T of tasks. A periodic task τi ∈ T is specified by the tuple

τi = (Ci, Ti, Di, ϕi) ∈ R4, where Ci ≥ 0 represents the worst-case execution time (WCET),

4We use the term releaser to indicate an independent component of a system that is responsible for
determining if and when a job should be released. Its role is distinct from that of the scheduler, which
decides which of the released jobs should be running at any point in time.
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Ti > 0 defines the period, Di > 0 is the relative deadline, and ϕi is the phase. The periodic

task τi releases its first job at time ϕi and subsequent jobs are released every Ti time units.

It is usually assumed that Ti is an integer multiple of the system tick for every task τi ∈ T.
Jobs must finish within their relative deadline Di after their release time.

A scheduler determines which job in the ready queue should be executed. Priority-based

schedulers, in which scheduling decisions are made by assigning priorities to jobs, have been

widely studied in the literature. At any point in time when a scheduling decision has to

be made, the highest-priority job among the jobs in the ready queue is allocated to the

processor for execution. When a job completes its execution, it is removed from the ready

queue. Every job of τi executes for at most Ci time units and has an absolute deadline

specified as its release time plus the relative deadline. A task set is an implicit-deadline

system if Di = Ti for all tasks τi ∈ T, and a constrained-deadline system if Di ≤ Ti for

all tasks τi ∈ T. If the deadline is not constrained by the period, i.e., Di > Ti is allowed,

then we call the task set an arbitrary-deadline system. We consider arbitrary-deadline task

systems in this paper, covering all possible cases.

In the literature, priority-based schedulers (on the task level) are classified into fixed-priority

and dynamic-priority schedulers. A scheduler is a fixed-priority scheduler if, for any two tasks

τi and τj, with different priorities, either all jobs of τi have higher priority than all jobs of

τj or all jobs of τj have higher priority than all jobs of τi. In contrast, for dynamic-priority

scheduling, a job of τi may have a higher priority than some jobs of τj but a lower priority

compared to other jobs of τj. Specifically, the rate-monotonic (RM) scheduler (where a task

with a shorter period has a higher priority) and the deadline-monotonic (DM) scheduler

(where a task with a smaller relative deadline has a higher priority) are well-known fixed-

priority scheduling policies, while the earliest-deadline-first (EDF) scheduler (where a job

with the earliest absolute deadline has the highest priority) is a well-known dynamic-priority

scheduling policy [84].

Furthermore, we differentiate between preemptive and non-preemptive scheduling algorithms.

That is, while for preemptive scheduling a scheduling decision is made at every timer inter-

rupt, for non-preemptive scheduling, decisions are only made at a few specific checkpoints

of job execution. More specifically, in preemptive scheduling, at every timer interrupt, it

is checked whether the currently running job is still the highest-priority job in the ready

queue, and if so, it continues executing. Otherwise, the system performs a context switch,
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Figure 3.2: Schedules for the running example of Section 3.1.1.

preempts the currently executing job, and executes the new highest-priority job in the ready

queue instead. On the other hand, for non-preemptive scheduling, a scheduling decision is

only made when (i) a running job finishes its execution or (ii) a job is inserted into an empty

ready queue. Since the scheduler can make a scheduling decision to start the execution of the

highest-priority job in the ready queue only at those time points, a running job is never pre-

empted and continues to be executed until it finishes. Worst-case analysis of non-preemptive

schedulers for real-time systems has been widely studied, e.g. [40,41,50,67,91].

Example 1. We consider the running example from the beginning of Section 3.1.1 with

three tasks. Specifically, we model them as periodic tasks with implicit deadlines, i.e., τ1 =

(3, 10, 10, 0), τ2 = (10, 30, 30, 0), and τ3 = (10, 30, 30, 0). Under RM scheduling, task τ1

has the highest priority. The schedule for RM non-preemptive scheduling is depicted in

Figure 3.2a. In particular, we observe that at time 10, task τ1 is placed in the ready queue

directly by the releaser. At time 13, the scheduler makes a new scheduling decision, identifies

the second job of task τ1 as the highest-priority job, and schedules it. Most importantly, all

tasks are released periodically, and the task prioritization and job selection of the scheduler

lead to a schedule where all tasks meet their specified deadline.
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Default Executor in ROS 2

The default single-threaded ROS 2 executor is depicted in Figure 3.1b. It schedules tasks’

eligible jobs using a wait set. Its scheduling mechanism is split up into two alternating

phases, the polling point and the processing window, which are performed sequentially in one

thread.

The polling point functions like the releaser in classical real-time scheduling. At each polling

point, the executor updates the wait set by sampling one job from each activated task. In

ROS 2, tasks are typically either timer tasks or subscription tasks. Timer tasks are time-

triggered and activated every period Ti, while subscription tasks are event-triggered and

activated indirectly through message reception. Tasks can publish messages through the

communication middleware of ROS 2, the DDS.

During each processing window, which is equivalent to the scheduler in classical real-time

scheduling, the jobs are executed using a fixed-priority non-preemptive scheduling policy.

The executor iterates over the wait set and selects the highest-priority job according to

the fixed-priority order of their respective tasks. The executor then executes the job non-

preemptively by calling a function (callback) associated with the task. After finishing the

execution of all jobs in the wait set, the wait set is empty, and the executor starts a new

polling point. The default ROS 2 executor prioritizes timers over subscriptions, and tasks

of the same type are prioritized according to their order of creation. Specifically, the default

ROS 2 executor does not provide any direct interfaces to configure task priorities.

In general, the design of the ROS 2 scheduling mechanism ensures that no matter how many

tasks are part of the system, all of them will be executed at some point. This approach

simplifies development, as developers do not need to analyze whether all tasks are guar-

anteed to execute. However, this design comes with a lack of strict enforcement of timing

requirements, such as ensuring the periodic release of timer tasks.

For the release of tasks in ROS 2, there is no timer interrupt that checks the eligibility of tasks

at every system tick. Instead, jobs are released only at polling points, regardless of the time

elapsed since the last polling point during the preceding processing window. This reduces

the flexibility of the schedule since fewer scheduling decisions are made. Furthermore, to

guarantee the periodic release of timers, the processing window length must be less than the

period of all timer tasks.
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However, the default ROS 2 executor is designed to execute all tasks at some point for any

system configuration, even when the processing window may be longer than the period of

a timer task. For this, it provides a flexible mechanism to track and perform the release of

timers. Each timer has a timestamp5, which is used to determine the eligibility of the timer

for release. At each polling point, the executor checks if the current time is greater than

or equal to the timestamp of the timer. If so, a job of that timer is sampled and added to

the wait set. Then, during the following processing window, when the timer job is selected

for execution from the wait set (the start time of the timer job), the timer’s timestamp is

updated. To update the timestamp, it is increased by the minimal multiple of the period

such that it is greater than the current time. As a result, the executor may increase the

timestamp of the timer by a multiple of the period, skipping a timer job if the time between

the previous timestamp and the start time of the next timer job is longer than the period of

the timer. This design, while being flexible, may skip timer jobs, contrary to the expectation

of a periodic release of timers.

Example 2. Again, we consider the running example from the beginning of Section 3.1.1

with three tasks. Since the tasks are time-triggered, we implement them as timer tasks with

periods 10 for τ1 and 30 for τ2 and τ3. The schedule obtained using the default ROS 2

executor is depicted in Figure 3.2b. In particular, the first polling point at time 0 samples

a job of each timer task and puts them to the wait set. During execution of the first job of

τ1, the timestamp of τ1 is updated to time 10. Only when the processing window finishes

(at time 23), during the polling point, the executor collects the second job of τ1 and moves

it to the wait set. In the subsequent processing window, the timestamp of τ1 is updated to

30—skipping the timestamp 20. While all jobs are executed at some point after activation,

the timer jobs are not released at their specified periods.

Dedicated response-time analyses have been developed for the default ROS 2 executor [21,

29, 110], along with suggestions to optimize the ROS 2 application code to mitigate long

response times [110]. Casini et al. [29] also introduced the concept of processing chains,

in which tasks may be triggered due to the arrival of data and output a result, triggering

other tasks. This propagation of data creates a natural structure of chained tasks that

can be used to measure the end-to-end latency of the task set. Specifically, Teper et al.

have analyzed [112, 114] and optimized [113] such end-to-end latencies in the ROS 2 single-

threaded executor. Multi-threaded executors have been developed and analyzed [68,81,104],

5The timestamp refers to the activation time variable of the ROS 2 codebase in the C++ client library
rclcpp.
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but these are still constrained by the wait set behavior of the default executor. Their

implementation either shares the wait set among threads in a thread pool or runs multiple

unmodified executors in different threads. The latter approach also requires the manual

assignment of nodes to executors. Furthermore, the multi-threaded variant of the default

executor is shown to be affected by starvation [115], i.e., it does not even ensure that all

tasks will be executed at some point after activation.

Comparison of Schedulers

We now compare the classical non-preemptive priority-based scheduler with the default ex-

ecutor in ROS 2. First, the release mechanism in ROS 2 is substantially different from the

typical release mechanism in classical real-time systems. That is, in classical real-time sys-

tems, jobs are released (almost) immediately by the timer interrupt. Contrarily, in ROS 2,

activated tasks are passively sampled by the executor at polling points. Specifically, timers

are not released every time their period elapses, but only when the executor samples them

at the polling point, potentially causing delays in the release of jobs. Combined with the

timestamp update mechanism, this can lead to the skipping of timer jobs for ROS 2, as jobs

may not be sampled every period. This is depicted in Figure 3.2b, where a job of τ1 for

timestamp 20 is skipped. In contrast, the same task set under the classical scheduler with

implicit deadlines would release all jobs at their specified periods, and no task would miss

its deadline.

Secondly, the scheduling mechanism and the resulting delays in ROS 2 differ from the classical

non-preemptive fixed-priority scheduler. In a classical non-preemptive FP scheduler, high-

priority jobs can only be blocked by one lower-priority job, as a new scheduling decision is

made every time a job finishes. We can see this in Figure 3.2a, where the second job of

task τ1 is blocked by only one job, the job of τ2, and the response time of τ1 is 6. On the

other hand, in ROS 2, scheduling decisions can only be made at the polling points. That is,

only once all the remaining jobs in the current processing window have finished execution,

including potentially all lower-priority jobs, new jobs are added to the wait set. This case is

depicted in Figure 3.2b where the second job of τ1 is blocked by both of the jobs of τ2 and

τ3 during [10, 23], leading to a response time of 16. This may lead to higher response times

for tasks in ROS 2 compared to the classical non-preemptive FP scheduler.

60



Thirdly, ROS 2 does not allow for the explicit setting of timing properties, such as deadlines,

or the direct control of the priority of tasks to influence the scheduling order. Instead, ROS 2

enables developers to focus on the application logic and the communication between nodes,

while the underlying scheduling mechanism ensures that all tasks are executed at some point

after activation, even if the timing requirements, such as the timer periods, are not met.

Due to these substantial differences between the classical non-preemptive scheduler and the

ROS 2 default scheduler, the rich literature of real-time scheduling theory is not directly

applicable to ROS 2 systems. Therefore, alternative executors for fixed-priority [33] or

dynamic-priority [6] schedulers have been developed. However, using executors provided

directly by ROS 2 for periodic task systems is still desirable to reduce design and implemen-

tation costs for developers.

3.1.2 The Events Executor

In 2023, ROS 2 added the events executor to its distribution [65], providing an alternative

to the default executor. It does not use a wait set but instead uses a FIFO queue, called

an events queue, that stores the jobs of tasks that are eligible for execution. Furthermore,

it uses separate threads for releasing jobs to the events queue and for scheduling jobs from

the events queue. Specifically, we have a timer management thread, DDS threads, and the

default thread. The mechanism of the events executor is depicted in Figure 3.1c.

The default thread is responsible for scheduling the jobs in the events queue. It does not

release jobs, but only executes the jobs in the events queue in a FIFO order. Non-timer tasks

are released by the DDS threads into the events queue. The release of non-timer tasks occurs

when the DDS threads receive events, such as for the arrival of a message. Specifically, the

DDS threads enqueue the events in the events queue as part of the operation that receives

messages. For timer tasks, the timer management thread manages a timer release queue,

and there are two options:

• Option 1: Release-Only (denoted RO). The timer management thread releases the

timer jobs from the timer release queue to the events queue (where non-timer events

also reside), and all jobs are scheduled by the default thread in FIFO order.
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Algorithm 6 Timer Management Thread in Events Executor
1: while Running do
2: time to sleep ← next timer release time - now
3: wait for(time to sleep)
4: head timer ← timers.front()
5: while head timer is eligible do
6: head timer.update timestamp()
7: if Option RO is configured then
8: events queue.enqueue(head timer , data)
9: else if Option RE is configured then
10: execute(head timer , data)
11: end if
12: Reorder timers by release time
13: head timer ← timers.front()
14: end while
15: end while

• Option 2: Release-and-Execute (denoted RE). The timer management thread holds

both released and unreleased timer jobs in its timer release queue and schedules them

based on their timestamp.

Therefore, for the RO option, the timer management thread only releases the timer jobs to

the events queue, while for the RE option, the timer management thread both releases and

schedules the timer jobs.

Algorithm 6 summarizes the implementation of the timer management thread in ROS 2.

First, in Lines 2-3, the timer management thread determines the time to sleep until the next

timer release time and then waits until that time elapses. For each release, in Lines 4–5,

the timer management thread first determines if the timestamp of the head timer has been

reached. When the timer is released, its timestamp is updated to the next timestamp in

Line 6, which is the smallest multiple of the period that is greater than the current time.

Then, for the RO option, the timer job is released into the events queue in Line 8. Likewise,

for the RE option, the timer job is immediately scheduled in Line 10. Afterward, in Line 12,

the queue is reordered according to the new timestamps of the timers that remain in the

queue.

The events executor has two properties that make it a potentially suitable option to bridge

the gap between ROS 2 and classical real-time scheduling:
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1. Separation: Different threads can be used to separate the execution and release of

tasks. Specifically, as depicted in Figure 3.1c, the timer management thread and the

DDS threads can be used to release jobs to the events queue, while the default thread

handles the job execution. This is similar to the mechanism of the classical real-time

scheduler, depicted in Figure 3.1a, where the releaser and the scheduler are separated

as the releaser inserts jobs into the ready queue when they are ready and the scheduler

takes ready jobs out of the ready queue for execution.

2. Granularity: Compared to the polling point in the default ROS 2 scheduler, depicted

in Figure 3.1b, where all jobs are collected during the polling point for execution,

the events executor always collects only one job for execution (either from the events

queue or from the set of active timers). Therefore, this leads to a finer granularity of

scheduling decisions, potentially reducing the blocking from lower-priority jobs.

3.1.3 Problem Definition

As we have discussed in Section 3.1.1, the default executor of ROS 2 is not compatible with

typical real-time systems scheduling. That is, the default executor shows behavior that is

typically not considered when looking at typical priority-based schedulers. More specifically,

classical priority-based schedulers have the following properties:

P1) Each job is inserted into the ready queue (almost) immediately by the releaser.

P2) Each scheduling decision determines only one job to be executed next.

Contrarily, for the default scheduler of ROS 2 we have:

D1) A job is inserted into a wait set only at polling points and only if the corresponding

task has been activated since its preceding execution.

D2) At the polling point, the scheduler makes the scheduling decision to run all jobs in the

wait set in a deterministic order and does not make another scheduling decision until

the next polling point.
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As a direct consequence, the default ROS 2 scheduler shows behavior that usually cannot

occur in typical priority-based schedulers. For example, a job release can be skipped, and

a high-priority task can be blocked by all lower-priority tasks. Therefore, the literature on

classical real-time systems theory is not directly applicable to ROS 2.

We now address the problem:

How can the results from classical real-time systems be made applicable to ROS
2?

To investigate this, we consider the events executor of ROS 2, which exhibits properties that

are closer to traditional real-time scheduling mechanisms, making it a promising candidate

for bridging the gap between these two models. To that end, we focus on timer tasks first,

present our proposed scheduler based on the events executor in Section 3.1.4, and discuss

the compatibility with the literature on non-preemptive schedulers for periodic tasks in

Section 3.1.5. Afterward, we discuss extensions of our results to ROS 2 applications with

subscription tasks in Section 3.1.6.

3.1.4 Proposed Scheduler

In this section, we present our proposed scheduler. In particular, we discuss the necessary

configuration and modification of the events executor to ensure the same behavior as a

classical priority-based, non-preemptive real-time scheduler.

As discussed in Section 3.1.2, the events executor has a finer scheduling granularity than the

default ROS 2 executor. In particular, a new scheduling decision is made when a job finishes

execution. Therefore, the events executor inherently fulfills property P2) from the problem

definition. The remainder of this section is divided into two parts: First, we discuss the

configuration to ensure immediate job releases, i.e., P1). Second, we detail the modifications

to model different priority-based scheduling algorithms like RM, DM, or EDF.
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Ensure Immediate Releases

To ensure immediate releases, we need to ensure that the release functionality is decoupled

from the execution functionality and that the execution cannot block job releases. We

achieve this by proper configuration of the RO/RE option and by proper prioritization of

the threads.

Choice of RO/RE Option As discussed in Section 3.1.2, there are two options for the

events executor: the Release-Only (RO) and the Release-and-Execute (RE) option.

The RE option does not separate the releaser and scheduler for timers. In this case, job

releases are only performed between job executions. This can lead to timer jobs being lost

if the execution time of a timer job exceeds the period of other timers. Due to these delays,

the RE option is not suitable to ensure immediate job releases.

However, the RO option separates the releaser and scheduler for timers. Just like the

classical real-time scheduler, this allows job releases to be handled without being blocked by

job execution. Specifically, timer jobs can be released into the events queue while the default

thread executes jobs. Furthermore, job releases and timestamp updates are independent of

the scheduling decisions made by the default thread. Therefore, to achieve P1), we choose

the RO option.

Thread Management To achieve P1), we need to ensure that the release of jobs is

guaranteed even while a job is executed. For this, we need to rely on the assumption that

the operating system allows scheduling of threads preemptively, meaning that the operating

system can interrupt the execution of a thread at any time. Furthermore, we need to assume

that threads can be prioritized if they run on the same processing core, i.e., if a lower-priority

thread is executing, the operating system can preempt it in favor of a higher-priority thread.

If the threads run on different processing cores, the operating system can schedule them

independently, and the threads can run concurrently. However, the threads share a common

data structure in the events queue, and access to the data structure needs to be synchronized.

Therefore, the only interference when releasing jobs occurs during access to the events queue.

We consider such blocking times as part of the job release overhead and they thus can be
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ignored. Therefore, the timer management thread can release jobs almost immediately, even

if the default thread is executing jobs.

If the threads share the same processing core, the priority of the threads is crucial. To

ensure jobs are released (almost) immediately, the timer management thread and the DDS

threads are configured to have a higher priority than the default thread. In this case, the

timer management thread and the DDS threads can preempt the default thread when it is

executing a job, releasing the timer jobs (almost) immediately. Otherwise, if, for example,

the default thread has a higher priority than the timer management thread, a long job

execution by the default thread may delay the release of a timer job, potentially skipping

it. Again, overheads caused by the operating system and for accessing the events queue are

considered part of the job release overhead and are ignored.

Job Prioritization

Although the configuration of the previous subsection achieves P1) and P2), the job execution

order in the events queue remains FIFO. Specifically, we consider the running example of

three tasks, as specified in Example 2 for the ROS 2 architecture. The schedule is depicted

in Figure 3.2c. While no job releases are skipped and scheduling decisions occur after every

job, the schedule differs from the schedule under classical non-preemptive FP scheduling,

depicted in Figure 3.2a. Specifically, while the second job of τ1 is added to the events queue

at time 10, the job is only started at time 23 because the jobs are executed in a FIFO order.

Assuming implicit deadlines, this would lead to a missed deadline for τ1. Under the classical

non-preemptive FP scheduling (Figure 3.2a), the second job of τ1 is added to the ready queue

at time 10 as well, but is started already at time 13, because it has higher priority than the

job of τ3. To achieve the same schedule, we need to handle the priority ordering of the events

queue.

For this, we change the events queue to a priority queue instead of a FIFO queue. The

highest-priority job can then be selected by extracting the first job from the priority queue.

The priority queue only adds an overhead of O(log n) for each priority insert, where n is

the number of tasks in the system. For priority-based reordering, the overhead is O(n log n).
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This overhead is inherent to priority-based management, unless special assumptions or mech-

anisms are introduced to avoid it. However, the overall overhead is negligible compared to

that of the other ROS 2 management routines.

For sorting the events queue in ROS 2, we additionally require information about the priority

of the jobs. By default, ROS 2 does not provide a priority field for tasks. In the following,

we discuss two options to provide the priority of the timer jobs, with different levels of

user interaction required. We focus on RM and EDF scheduling of timer tasks. Possible

extensions for subscription tasks can be found in Section 3.1.6.

The first option uses each timer’s period as its priority. Each timer task already provides

a period, required when creating the timer. Thus, this information can be used during

scheduling to prioritize the timer jobs in the events queue. For RM scheduling, the timer

job with the smallest period has the highest priority. Therefore, when inserting a timer job

into the events queue, the queue can access the period of the timer and insert the job based

on the period. For implicit-deadline EDF scheduling, we can use the next timestamp of the

timer as the priority of the timer job. When inserting a timer job into the events queue, the

queue can access the next timestamp of the timer and insert the job based on the timestamp.

As a second option, we propose to add a user-defined priority field to the timer structure. It

can either hold static priorities for static-priority scheduling or relative deadlines for dynamic-

priority scheduling. The approach theoretically supports any job-level fixed-priority non-

preemptive scheduler if the priority can be decided when the job arrives, e.g., the non-

preemptive rate-monotonic (RM) and earliest-deadline-first (EDF) scheduling policies for

uniprocessor systems. While this option is less user-friendly, as it requires users to change

the current code of their system to provide the priority of the timer jobs, it is a more versatile

approach and supports any job-level priority ordering. We provide both options to enable

priority-based scheduling in ROS 2.

After prioritization of the events queue using one of the two options above, the corresponding

schedule for the running example is depicted in Figure 3.2d. Specifically, at time 10, the

second job of task τ1 is inserted into the events queue with the highest priority and is chosen

to be scheduled at time 13. The corresponding schedule coincides with the schedule under

classical non-preemptive FP scheduling from Figure 3.2a. To conclude, our changes enable

the events executor to be used for arbitrary fixed-priority or dynamic-priority scheduling
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policies for non-preemptive scheduling. Thus, our proposed design is compatible with the

classical real-time scheduling theory, as we discuss further in Section 3.1.5.

3.1.5 Compatibility with Non-Preemptive Schedulers for Periodic

Tasks

In this section, we explain how our proposed scheduler from Section 3.1.4 bridges the gap

between the literature on priority-based scheduling and ROS 2. To that end, we show

that our scheduler behaves analytically like a non-preemptive work-conserving priority-based

scheduler We discuss the overhead that results from our scheduler. We then specify which

analytical results apply to our scheduler, focusing on the worst-case response time and end-

to-end latency (which is one of the predominantly studied metrics for ROS 2 systems).

For the discussion in this section, we assume that the ROS 2 application has only timers

and the system is exclusively used to execute the ROS 2 application on one processor. An

extension to incorporate subscriptions can be found in Section 3.1.6. We assume that tasks

have different priorities and ties are broken arbitrarily but deterministically.

Analytical Behavior of Our Scheduler

Our solution uses the events executor with a modification of the events queue for priority-

based job ordering. The release of timer jobs into the events queue is done in the timer

management thread, which is given a higher priority than the default thread. Therefore,

whenever the timestamp of the timer task is reached, a job of that task is inserted into the

events queue immediately6. Hence, jobs are released (i.e., inserted into the events queue)

periodically. Moreover, scheduling decisions are made whenever a job finishes by pulling

the first job (i.e., the highest priority job) from the events queue. In addition, when the

executor idles and a new job is released, it makes a scheduling decision immediately and

starts executing the job. Therefore, our scheduler behaves like a typical non-preemptive

work-conserving scheduler.

6Please note that our solution only works under the assumption that the timer management thread is not
blocked.
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Bounding the Releaser Overhead

Let δ > 0 be the maximal time for releasing a job. Then, if a job is released into the events

queue, this prolongs the execution time of the job that is currently running. Hence, by

counting the maximal number of releases during the execution of a job, we obtain a bound

on the overhead. We denote by ∆i the overhead that jobs of τi can experience.

With our solution, a job is released whenever a timestamp is reached. The number of

timestamps that can occur for a task τj during an interval of length t is
⌈

t
Tj

⌉
. Let t0 ∈ R>0

be the lowest positive real number such that t0 ≥ Ci+
∑n

j=1

⌈
t0
Tj

⌉
·δ. Then t0 is the amount of

time that a job of τi can execute, including the overhead from releasing other tasks. Hence,

the release overhead for task τi is bounded by

∆i ≤
n∑

j=1

⌈
t0
Tj

⌉
· δ. (3.1)

This overhead has to be accounted for when applying the results in the literature for non-

preemptive schedulers by prolonging the worst-case execution time value Ci by ∆i.

This bound on the overhead ∆i can be tightened further if the following two conditions hold:

• The task set has constrained deadlines.

• The task set is already shown to be schedulable (e.g., by using the bound on the

overhead from Equation (3.1) together with a schedulability test that is referenced in

Section 3.1.5).

Under these conditions, every other task can only release one job during the execution of a

job of τi. Otherwise, assuming a task τj releases two jobs at timestamps t1 and t2 = t1 + TJ

during the execution of a job of τi, then the job of τj cannot be executed until time t2.

Hence, it would miss its constrained deadline, which violates the schedulability of the task

set. Therefore, under the two conditions, the overhead for the releaser is upper bounded by

∆i ≤ n · δ, (3.2)

where n is the number of tasks in the system.
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We note that it is unsafe to apply the tightened bound from Equation (3.2) directly for

calculating a response time bound and checking the schedulability based on that. However,

when the response time is already shown to be less than the deadline Di, we can use this

formula to tighten the response time bound further. This can be beneficial when applying

analyses that utilize the worst-case response time (cf. Section 3.1.5).

Analytical Results

As detailed above, our proposed scheduler behaves analytically like a typical non-preemptive

scheduler. Although this pertains to any scheduling algorithm that can be modeled by

reordering the events queue, as discussed in Section 3.1.4, we focus specifically on FP and

EDF scheduling. For this section, we assume that the overhead is accounted for by prolonging

the WCET, i.e., by redefining Ci := Ci +∆i.

Worst-Case Response Time The worst-case response time of a task is the maximal time

between the release and finish of any job of that task. With our proposed scheduler, the

rich literature on non-preemptive scheduling for periodic tasks becomes applicable (cf. [40,

50, 67, 91, 118]). Note that this also encompasses the literature on non-preemptive sporadic

tasks by setting the minimum inter-arrival time to the task period. Especially, results for

non-preemptive FP scheduling can be found in [40,50,91,118] and results for non-preemptive

EDF scheduling can be found in [50, 67, 91]. With our scheduler, any of these analyses can

be applied to derive a bound on the worst-case response time. We note that when a task

set is shown to be schedulable (for example by any of the above analyses), then we can also

claim an upper bound on the worst-case response time, namely Ri ≤ Di.

End-To-End Latency One of the predominantly studied metrics for ROS 2 applications

is end-to-end latency. That is, given a so-called cause-effect chain, which is a sequence of

tasks E = (τi1 → . . . τiN ), with ij ∈ {1, . . . , n} being a task index for all j = 1, . . . , n, then

we are interested in the amount of time that data needs to traverse the cause-effect chain.

Specifically, the Maximum Reaction Time (MRT), i.e., the amount of time until an external

cause is fully processed, and the Maximum Data Age (MDA), i.e., the age of data utilized in

an actuation, have been analyzed extensively in the literature. Recently, it has been shown
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that MRT and MDA are equivalent [54]. Hence, we use Lat to denote the end-to-end latency

of a cause-effect chain in general.

While there are only a few analytical results for the standard ROS 2 application [112, 114],

there is a large body of literature results for typical periodic tasks [11, 12, 19, 39, 43, 51–55,

57,72]. Our scheduler enables such results and insights from end-to-end analysis for periodic

task systems.

A classical bound, proposed by Davare et al. [39], is to bound the end-to-end latency by

summing up the task periods Tij and worst-case response times Rij :

Lat ≤
N∑
j=1

(
Tij +Rij

)
(3.3)

Here, Tij is the period of the j-th task in the cause-effect chain, and Rij is the worst-case

response time of the j-th task in the cause-effect chain, i.e., of task τij . The bound assumes

that tasks communicate via the implicit communication principle [57], i.e., jobs read data

when they start execution and write data when they finish execution. While the original

bound is proven only for preemptive fixed-priority scheduling in [39], this result is universally

applicable when utilizing a correct bound on the worst-case response time. This is proven

for example as a byproduct of the probabilistic analysis by Günzel et al. [56], i.e., their

reduction to the case with deterministic worst-case response time bound in Note 6.3 of [56]

proves Equation (3.3) without assumptions on the scheduling algorithm.

To summarize, given a cause-effect chain E on the task set T scheduled by our scheduler,

then the following steps result in a bound on the end-to-end latency:

1. Calculating the overhead ∆i from Section 3.1.5 and incorporating it in the WCET by

Ci := Ci +∆i.

2. Providing an upper bound on the worst-case response time Ri using literature results

for non-preemptive periodic tasks.

3. Calculating a bound for the end-to-end latency using Equation (3.3).

In Section 3.1.7, we compare this bound on the end-to-end latency with the latency that can

be analytically guaranteed for the typical ROS 2 scheduler [114].

71



3.1.6 Subscription Tasks

The previous sections focused on the behavior of timer tasks. However, besides timers,

ROS 2 allows tasks to be triggered through the built-in DDS layer. Since such subscription

tasks are widely used in practice, this section explains how our findings can be extended to

systems involving subscription tasks.

First, we observe that our proposed scheduler from Section 3.1.4 still fulfills P1) and P2)

even for subscription tasks. That is, by giving the DDS threads higher priority than the

default thread or by running them on a separate core, the release of subscription tasks is not

blocked by job execution, and a new scheduling decision is made after every job.

We are left with the problem that subscription tasks cannot be modeled and analyzed as pe-

riodic tasks because they are not inherently time-triggered (unlike timer tasks). Instead, the

timing behavior of subscriptions is dependent on the tasks that publish to the subscription’s

topic. Furthermore, there is no direct parameter to set the priority of a subscription task.

In the following, we present two approaches to model and analyze subscription tasks: first, a

sporadic task model that applies to any system structure and second, a limited-preemptive

scheduling approach can be used for systems with a specific structure to obtain potentially

tighter bounds. Afterward, we discuss solutions for the prioritization of subscription tasks.

Modeling as Sporadic Tasks

To analyze subscriptions as sporadic tasks, we need to assume that subscription tasks have a

minimum inter-arrival time > 0, meaning that no two jobs of the same subscription task are

released within this time frame. If such a minimum inter-arrival time can be identified, then

we can analyze them as sporadic tasks. For example, if tasks are assumed to only publish

once at the end of their execution, the minimum inter-arrival time can be bounded by the

minimum best-case execution time among all tasks that publish to the subscription topic,

for single-executor systems. While this general approach to deriving a minimum inter-arrival

time can be quite pessimistic, more dedicated analyses for specific task sets can potentially

derive much tighter bounds on the minimum inter-arrival time.
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Please note that, as in Section 3.1.5, we also need to account for the overhead from the

releaser. For this, we prolong the WCET of the subscription tasks. Given a minimum inter-

arrival time Ti for a subscription task τi, the overhead ∆i is bounded by Equation (3.1).

Modeling as Limited-Preemptive Tasks

For a special case, where tasks are arranged in sequences, the analysis for limited-preemptive

tasks is applicable. That is, we consider the case that each task invokes the activation of

at most one subscription task, and each subscription task can be activated by exactly one

task. Furthermore, we assume that the first task of a sequence is a timer task, to achieve

time-triggered behavior, and all subsequent tasks are subscription tasks since they subscribe

to a topic by definition. An example of such sequences can look as follows:

• sequence1 = timer1 → subscription1 → subscription2

• sequence2 = timer2 → subscription3 → subscription4

Each job of the timer task in a sequence releases one job of the subsequent subscription

tasks. Furthermore, we assume no delay is introduced by the DDS between releasing a

subscription task and activating the downstream task, preventing lower-priority jobs from

being started before the subscription task’s release. For this, ROS 2 provides the option to

use synchronous DDS communication or zero-copy communication.

With these assumptions, the literature on limited preemptive scheduling, e.g., [17, 28, 126],

is applicable, where each sequence is modeled as one ‘task’, with each timer task and sub-

scription task being a ‘subtask’. Each subtask is scheduled non-preemptively, and between

subtasks, the task can be preempted. The benefit of considering sequences is that there is

no need to determine (potentially pessimistic) minimum inter-arrival times of subscription

tasks.

We further note that, in case the DDS introduces a certain delay in releasing the subsequent

subscription [78], another lower-priority job may be started in between the execution of

two non-preemptive subtasks. In that case, the additional delay can be modeled as self-

suspension [31]. More specifically, the set of sequences behaves like a set of segmented

self-suspending tasks scheduled non-preemptively on a single core.
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Prioritization of Subscription Tasks

For both models, a prioritization of the subscription tasks is necessary. Currently, there is

no direct way to set the priority of a subscription task in ROS 2. However, we propose two

potential solutions to prioritize subscription tasks.

• The first one is to utilize the ROS 2 DDS and its Quality-of-Service (QoS) settings to

configure parameters about the communication behavior. Specifically, each subscrip-

tion has one topic that it subscribes to, and each topic has a QoS setting. Currently,

one QoS parameter for topics is the so-called deadline [60], which for topics describes

the expected maximum amount of time between subsequent messages being published

to the topic. To integrate the minimum inter-arrival time, we propose to introduce a

QoS parameter that reflects the expected minimum amount of time between subsequent

messages being published to the topic. For the final integration into the scheduling

decisions, changes to the executor are necessary that would consider the DDS QoS

parameters, such as the minimum inter-arrival time.

• For the second one, we propose to add a priority field to subscriptions, which can

be set by the user. This approach is more direct and flexible but requires changes

to the ROS 2 codebase and the application code. Given this priority field, the same

procedure as for the timer jobs mentioned in Section 3.1.4 can be applied for both

static and dynamic priority assignments.

In both cases, it would be beneficial to have interfaces to dynamically set the priority com-

parison function of an executor. This would maximize compatibility, ensuring that existing

executors can still be used, while other scheduling policies can be implemented just as easily.

In any case, the priority queue that we introduced in Section 3.1.4 to replace the events

queue can be used to handle both timer jobs and subscription jobs. Moreover, there are no

further modifications required for handling subscriptions.
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3.1.7 Evaluation

In this section, we evaluate our proposed modifications of the ROS 2 events executor and

the corresponding analyses. The evaluation consists of three contributions:

• We confirm compatibility with scheduling theory on non-preemptive schedulers

for periodic tasks. More specifically, we demonstrate for a timer-only task set that the

analytical results of Section 3.1.5 are applicable. That is, the modified ROS 2 events

executor does not drop jobs, and it respects the worst-case response time bounds for

non-preemptive scheduling presented in Section 3.1.5.

• We show that the bounds on end-to-end latency for cause-effect chains, enabled by

the theory of non-preemptive scheduling bounds in Section 3.1.5, are tighter than the

state-of-the-art analytical end-to-end latency bounds for the default executor. To that

end, we apply the analyses to synthetic task sets using the WATERS [77] benchmark.

• We compare our modified executor using the RM scheduling policy with the default

executor by assessing their Performance in the Autoware reference system. The

Autoware reference system includes both timers and subscriptions, and demonstrates

that we can achieve lower end-to-end latency than the other executor options that are

provided natively by ROS 2.

Our experiments feature the following executor configurations:

• default executor (Default),

• static default single-threaded Executor (Static),

• unmodified default events executor (Events),

• our rate-monotonic events executor (RM), and

• our earliest-deadline-first events executor (EDF).

We include the static default executor for completeness. It behaves like the default executor,

but with less overhead, as it does not have to handle dynamic system configurations. We

also provide an artifact7 of our evaluation.

7https://github.com/tu-dortmund-ls12-rt/ros2_executor_evaluations
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Compatibility with Scheduling Theory

In this subsection, we demonstrate that existing results on non-preemptive scheduling apply

to our scheduler, and analytical results correctly predict the behavior of the system.

To that end, we examine a timer-only task set that consists of three types of components,

and seven nodes in total. The system has four cameras, two LiDARs, and an IMU. Each

node has one timer task, and each component is independent of the others, meaning that

they do not pass data between each other and have no precedence constraints. By varying

the maximum execution time of the tasks, we configure the system to have a utilization of

60%, 80%, or 90%. Our three configurations are as follows:

60% utilization

• 4 Camera Nodes: 84ms period, 10ms execution each

• 2 LiDAR Nodes: 200ms period, 10ms execution each

• 1 IMU Node, 30ms period, 1ms execution

80% utilization

• 4 Camera Nodes: 84ms period, 14ms execution each

• 2 LiDAR Nodes: 200ms period, 10ms execution each

• 1 IMU Node, 30ms period, 1ms execution

90% utilization

• 4 Camera Nodes: 84ms period, 16ms execution each

• 2 LiDAR Nodes: 200ms period, 10ms execution each

• 1 IMU Node, 30ms period, 1ms execution
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Figure 3.3: Dropped jobs on timer-only task sets: A checkmark indicates no dropped jobs
across all utilization levels.

Task periods stay consistent across all utilization levels, so all task sets have the same

hyperperiod of 4.2 s. Each task set is run for 5min, elapsing over 70 hyperperiods. We

repeat this setting for each executor design.

Each of these task sets is pinned to a single core of a Raspberry Pi Model 4B with 4GB

of RAM running Ubuntu 22.04 and ROS 2 Humble. The first experiment (Section 3.1.7)

uses one core, the second experiment (Section 3.1.7) assumes that the executor runs on one

processing core, and the third experiment (Section 3.1.7) uses two cores with no thread

pinning.

Number of Dropped Jobs: The rate of dropped jobs for different configurations is shown

in Figure 3.3. We can see that the default and static executors repeatedly drop jobs. In

some cases, a drop rate of 5% is observed. Confirming our analytical results of Section 3.1.5,

which indicate no job drops, our proposed events executors do not have any job drops for

any configuration of the RM and EDF events executors.
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Table 3.1: Analytical worst-case response times (ms) of our RM events executor.

Utilization 60% 80% 90% Period
IMU 12.67 16.67 18.67 30

Camera 57.83 75.66 83.66 84
LiDAR 70.50 149.50 167.33 200

Response Time Bounds: In the following, we analytically derive upper bounds on the

worst-case response time, following Section 3.1.5, and then confirm that the response time

bounds are not violated by our RM events executor.

For the analysis, we measured that a job release takes up to δ = 0.12 µs. The total overhead
∆i for a timer task τi can be determined by Equation (3.1). Doing the calculations for the

task sets of this section, every timer task has an overhead of ∆i = 0.84ms. For the analysis,

we add this overhead to the WCET of each task, i.e., Ci := Ci +∆i.

Afterward, we apply Equation 6 from von der Brüggen et al. [118] to determine the worst-case

response time of each task.

Theorem 1 (Non-preemptive FP, reformulated from [118]). Assume that the tasks T =

{τ1, · · · , τn} are ordered by their priority, i.e., τ1 has the highest priority and τn has the

lowest priority. If there exists a t ≥ 0 ∈ R such that t ≤ Dk and

t ≥ Ck +max
i>k

Ci +
∑
i<k

⌈
t

Ti

⌉
Ci, (3.4)

then the worst-case response time Rk of τk ∈ T under non-preemptive FP scheduling is upper

bounded by t.

We consider implicit-deadline task systems, i.e., the relative deadline of a timer task is equal

to its timer period. The analyzed worst-case response times for our RM events executor are

reported in Table 3.1, indicating no deadline misses. Thus, we should not observe any job

drops, as verified in Figure 3.3, and all tasks are guaranteed to meet their deadlines.

We then measured the response times during the experiment. The aggregated results of the

Camera nodes are shown in Figure 3.4a, the LiDAR nodes in Figure 3.4b, and the IMU node

in Figure 3.4c. As shown in the figures, the response times of our work are consistent with the

analytical results, and no deadline overruns are observed. Furthermore, in Figure 3.4c, we
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see that the IMU tasks have deadline overruns on the Default, Static, and Events executors.

We note that Figures 3.4a, 3.4b, and 3.4c only account for the response times of jobs that

are not dropped. Hence, for a significant amount of timestamps, the Default executor and

Static executor do not respond within the deadline, as can be observed in Figure 3.3.

In conclusion, our analysis not only correctly indicates the absence of dropped jobs in our

RM events executor, but also a correct upper bound on the response time of each task.

Tighter End-to-End Bounds for ROS 2

We now compare the analytically derived upper bounds of the end-to-end latencies between

the default ROS 2 executor and our RM events executor. For this experiment, we generate

synthetic task sets using the WATERS benchmark [77] for automotive systems.

We evaluate utilization levels of 60%, 80%, and 90%, generating one thousand task sets per

configuration with 10 to 200 tasks. To compute end-to-end latencies, we generate 5 to 60

task chains, each with 2 to 15 tasks. We assume all tasks are assigned to one events executor

running on a single core.

For each task set, we calculate the end-to-end latency for the default ROS 2 executor and

our RM (including both RO- and RE-options) events executor, as presented in Section 3.1.5.

Specifically, we use Equation (3.3) in Section 3.1.5 to calculate the end-to-end latency of

each chain.

The end-to-end latency of the default ROS 2 executor has been analyzed by Teper et al. [112].

We use Equation (15) of Lemma VI.1 and Equation (17) of Lemma VI.2 from [112] to get

an upper bound on the latency of each timer. For each chain, we sum up the latency upper

bounds of all chain tasks to get the end-to-end latency of the chain.

For each chain, we calculate the normalized reduction of the end-to-end latency by using
Edefault−ERM

Edefault
, where Edefault (ERM , respectively) is the end-to-end latency of the chain under

the default executor (our RM events executor, respectively). The results of the evaluation

are shown in Figure 3.5, where the x-axis is the normalized reduction and the y-axis is the

number of chains within the binned normalized reduction.
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(a) Response Time of Camera Tasks (ms), D=84ms

(b) Response Time of LiDAR Tasks (ms), D=200ms

(c) Response Time of IMU Tasks (ms), D=30ms

Figure 3.4: Response Time of Tasks (ms)
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The end-to-end latencies of the chains are typically much lower when using our RM events

executor. As the utilization level increases, the number of chains with higher end-to-end

latencies increases as well. This is because the default ROS 2 executor treats all callbacks

fairly, disregarding their priorities. Meanwhile, static-priority scheduling assigns some call-

backs lower priorities, increasing their response times (see Figure 3.4b) and resulting in a

negative reduction of end-to-end latencies for chains that include such tasks. However, the

majority of chains have lower end-to-end latency when using the RM events executor. In

some cases, we observe a normalized reduction of the end-to-end latency bound of almost

90%. Our experiment shows that our design can be applied to different kinds of task sets

and potentially leads to latency improvements.

Performance of Autoware Reference System

We also evaluate end-to-end latencies for the Autoware reference system, detailed in [100],

which includes interconnected timers and subscriptions [1]. The Autoware reference bench-

mark runs a simulated version of the Autoware application on a Raspberry Pi Model 4B

running Ubuntu 22.04 and ROS 2 Humble. We run the ROS 2 Autoware benchmark on

two dedicated cores, while the other two cores are handling the remaining services of the

operating system. Specifically, we measure the end-to-end latency of the hot path defined

in the benchmark from the front and rear LiDAR sensors to the object collision estimator

(c.f. the Autoware reference system), as this latency is a key metric for responsiveness in

crash avoidance. The data at the start of the hot path that is generated by the LiDARs is

produced at a frequency of 10Hz.

For our RM events executor, the subscription tasks inherit the highest priority from their

corresponding upstream publishers. Non-preemptive EDF in this scenario is not well speci-

fied, as subscription tasks do not have any assigned deadlines, and hence is not part of this

evaluation.

Figure 3.6 shows the violin plot for the latency of the hot path in the Autoware reference

system from a test run of 600 seconds. Of the executors measured, our RM events executor

has the best worst-case latency, significantly outperforming the other executors. Compared

to our work, the default ROS 2 executor has a 2.6x slowdown along the hot path. Our

evaluation shows that our executor design using existing scheduling policies from classical
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Figure 3.5: Reduction of the end-to-end latency between the default ROS 2 executor and
our RM events executor.

real-time systems can be applied to practical ROS 2 applications and can provide major

benefits in terms of end-to-end latency.

3.1.8 Conclusion

We have conducted in-depth investigations of the recently introduced (in 2023) events ex-

ecutor in ROS 2 to provide compatibility with the classical real-time scheduling theory of

periodic task systems. Specifically, our solution is easy to integrate into existing ROS 2

systems since it requires only minor modifications of the events executor that is already

natively included in ROS 2. Thus, it also can coexist with available ROS 2 executors, such

as the default executor.

Our study enables the rich literature of the real-time scheduling theory for non-preemptive

schedules to apply to ROS 2, under the assumption that an individual core is exclusively
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Figure 3.6: End-to-end latency of the hot path in the Autoware reference system under
different executors.

assigned to our executor. Furthermore, we intensively validate the feasibility of our mod-

ifications for non-preemptive RM and non-preemptive EDF in the ROS 2 events executor

for several scenarios. The evaluation results show that with minor modifications our ROS 2

events executor can offer significant improvement in terms of dropped jobs, worst-case re-

sponse time, end-to-end latency, and performance, in comparison to the default ROS 2

executors that are available.

We note that our emphasis is on the compatibility of the ROS 2 events executor with the

classical scheduling theory of periodic tasks. As a result, we mainly focus on the trans-

formation of a timer into a periodic task. We highlight that event-triggered tasks require

dedicated analyses, but also provide methods to analyze some specific system configurations

using existing analyses on limited preemptive scheduling. Therefore, in future work, we will

further investigate the interaction of the built-in DDS and the events executor to provide

more insights when both timers and subscriptions are present and interact with each other.

Finally, to be compatible with event-triggered tasks in ROS 2, such as subscriptions, we

propose to add dedicated interfaces to ROS 2 to specify timing properties, which are currently

missing. Towards this, we discuss two potential solutions, either involving DDS QoS settings

or introducing a dedicated priority field. These additions would enable the integration of

many scheduling policies into ROS 2 and provide compatibility for event-triggered tasks.
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3.2 Graph-Aware Scheduling in ROS 2

This section continues to address the limitations of current scheduling methods in the ROS 2,

but focusing on scheduling tasks beyond simple chains and analyzing arbitrary graphs. While

previous research has mostly focused on chain-based scheduling with ad-hoc response time

analyses, we propose a novel approach using the events executor [65] to implement fixed-job-

level-priority schedulers for arbitrary ROS 2 graphs on uniprocessor systems.

While the work in the first half of this chapter [111] laid important groundwork and demon-

strated the potential for chains, it did not provide a concrete mechanism or analysis for

applying standard priority-based scheduling to general ROS 2 graphs (involving branching

and merging).

Contributions:

In this section, we (i) provide a mapping showing that an arbitrary ROS 2 graph can be

modelled as a set of DAG tasks for analysis purposes (Section 3.2.1), including showing

that ROS 2 graphs are logically trees for the purposes of scheduling (Section 3.2.3); (ii)

introduce an events queue implementation for the Events Executor that can realize any

LP-FJP scheduler for the resulting DAG tasks (Section 3.2.5), noting that our approach

relies on LIFO-ordered message queues which are not yet standard in ROS 2 middleware;

and (iii) provide a formal analysis proving the correctness of this events queue mechanism

(Section 3.2.6).

This work further closes the gap between established real-time systems theory and practical

ROS 2 scheduling analysis, moving beyond the ad-hoc approaches and chain-structured

applications of existing literature.

3.2.1 System Model

In this section, we discuss the unique manner in which ROS 2 schedules callbacks, and the

assumptions we must make before mapping applications to a conventional DAG task model,

detailed next.
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Task Model

Given a set T = {τ1, τ2, ..., τn} of tasks, a periodic DAG task τi is specified by the tuple

τi = (Ti, Di, ϕi) ∈ R3, where Ti > 0 is the period, Di > 0 is the relative deadline, and ϕi is the

phase. The periodic task τi releases its first job (task instance) at time ϕi, and subsequent

jobs are released every Ti time units. Every job has an absolute deadline specified as its

release time plus the relative deadline.

A sporadic DAG task τi is similarly defined as the tuple τi = (Ti, Di) ∈ R2, where Ti is

instead the minimum interarrival time between two successive jobs. The periodic task model

is a specialization of the sporadic task model.

Each DAG task is associated with a graph Gi = (Vi, Ei). The nodes in the finite set

Vi = {vi1, vi2, ...} model non-preemptible portions of work, or subtasks, in the task τi. Each

subtask vij has a worst-case execution time (WCET) wij and may have precedence con-

straints modeled by the relations in the finite set Ei = {ei1, ei2, ...}. A subtask is released

when all of its precedence constraints (if any exist) are met. We define a precedence relation

as vij ≺ vik and say that vij is a parent of vik.

Each subtask vij has an associated amount of work, Wij, which is the WCET the subtask

needs to complete. We say a job of task τi is complete when one instance each of vij ∈ Vi

are complete. We focus specifically on DAG task schedulers with limited preemption and

fixed job-level priority.

Limited preemption (LP) means that individual subtasks cannot be preempted, but a task

can be preempted in between constituent subtasks. We take this approach to conform to the

natural behavior of ROS 2 executors, which will not preempt running executables. Thus,

the only possible preemption points are at the completion of subtasks.

Fixed job-level priority (FJP) means that a task and all its constituent subtasks have the

same priority for a given job instance. The priority between two job releases of the same task

may vary. All fixed-priority schedulers are naturally also fixed for individual jobs. Earliest

Deadline First (EDF) is an example of a dynamic-priority scheduler whose priorities are

fixed for individual jobs, i.e., it is FJP.
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3.2.2 Mapping ROS 2 to DAG Task Model

As in prior literature [29, 33, 110], we abstract the dataflow paths of a ROS 2 application

into a graph structure. To illustrate, consider an example ROS 2 application with a couple

sensor nodes that take periodic measurements, and publish their data to topics subscribed

by downstream computation nodes, like sensor fusion, mapping, planning, etc. The sensors

are time triggered and so associated with timers. All data-driven tasks are associated with

subscriptions.

Within the graph structure, each callback (timer, subscription, etc) forms a subtask, which

may be released periodically (in the case of timers), or data-driven (in the case of subscrip-

tions). During the course of a its execution, a subtask τi may publish a message to a topic,

and any subscribers to that topic, τj will be modeled as children of τi.

We assume that ROS 2 applications do not have such loops, enabling the connection to

DAGs. Given no restrictions on the system design, it is possible for subscriptions to send

messages to themselves or form a loop in which data is propagated from one subscription

through other subscriptions and back to itself. But if a subscription is allowed to continually

trigger itself, it creates a positive feedback loop of exploding message bandwidth, so this is

strongly discouraged by good ROS 2 design principles. After establishing these precedence

constraints, these subtasks can then be arranged into DAG tasks. In the next section, we

will demonstrate that they have a tree-based structure, and so a singular subtask can be

described as the root. These DAG tasks are modeled as periodic tasks when a timer is at

the root, and externally-driven sporadic tasks when a subscription is at the root.

In the existing DAG scheduling literature, the term node is synonymous with subtask [27,

47,92,102,117]. To avoid confusion, we will strictly use the ROS 2 definition of node, which

is an object that serves as a programmatical abstraction to bundle executable entities under

a unified namespace. Subtask will be used exclusively to refer to callbacks in the context of

scheduling.
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We only concern ourselves with dataflow that occurs through the DDS, a publish-subscribe

communication middleware used in a ROS 2 based system. Any two subtasks that com-

municate with shared memory (as is the case with some fusion node8 implementations) are

not necessarily modeled as being in the same task. A precedence constraint is only imposed

when the execution of one subtask triggers the release of another. Any subtasks that ex-

change information asynchronously, bypassing the pub/sub mechanism, are not modelled by

our work.

Code within callbacks can be fairly arbitrary. In order for the analysis of a ROS 2 application

to be feasible, we must impose some constraints on its behavior: (1) children are eligible for

release as soon as parents finish, so no inter-subtask latency needs to be modeled; (2) no new

threads are created; (3) no blocking on IO reads occur; and (4) more generally, all execution

times of callbacks are bounded.

Conventional real-time schedulers stipulate that child subtasks are eligible for execution

when their parents complete, and thus imposing this requirement is needed to comply with

the analysis of a LP-FJP scheduler. We restrict the callback’s ability to spawn new threads,

since the scope of this work is limited to the uniprocessor case. According to the model

we established in 3.2.1, subtasks have a finite WCET. Therefore anything capable of an

unbounded delay is not allowed.

One of the most unique aspects of modeling ROS 2 applications as a DAG task is that prece-

dence constraints are logically disjunctive: a subtask will execute a job for each execution

of each of its parents. This is not in line with the conventional DAG task model we laid out

above, until we apply the abstraction of virtually unfolding the graph into a forest of trees,

described next.

3.2.3 Graph Unfolding

We now show that ROS 2 applications that can be modeled as DAGs can be converted

to trees due to the logically disjunctive precedence constraints. In conventional DAGs,

subtasks will wait for all of their parents before being eligible for execution. In ROS 2,

8A fusion node is a component with a single output that combines data from multiple inputs. Unlike
many-to-one topics, the output topic operates at an independent rate, or a rate matching only one of the
inputs.
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however, when multiple parents publish to the same subtask, the child will execute once for

each parent event. To model this behavior for analysis purposes, we adapt the concept of

graph unfolding [22] where we virtually duplicate each subtask so that each resulting virtual

subtask instance has exactly one parent.

This transformation is illustrated in Figure 3.7. This creates a tree (or rather a forest, since

there can be multiple trees). We posit some properties of this new representation: (i) each

subtask has either 1 or 0 parents; (ii) each subtask is the root of a unique subtree; (iii)

subtasks with 0 parents will be the root of a tree; and (iv) root subtasks can be modelled

sporadically.

To justify the last point, we note that timer tasks trigger periodically, and it’s assumed that

parentless subscription tasks are triggered by some external event for which a minimum inter-

arrival time is known. This assumption is in line with prior literature [110]. As previously

mentioned, this transformation is possible for ROS 2 applications that are free of cycles and

can be modeled as DAGs.

3.2.4 Fusion Nodes

A common pattern in ROS 2 involves fusion nodes, which combine data from multiple input

topics. While the previous sections already sufficient for general DAGs, we present special

commentary for the modeling of fusion nodes in graph unfolding. This depends on their

implementation:

• Trigger-Based Fusion. If a node subscribes to multiple topics and its single call-

back executes upon message arrival, potentially varying its behavior or execution time

based on which topic triggered it or conditionally publishing, our unfolding process

(Section 3.2.3) still applies. The fusion node is duplicated for each incoming topic

edge. While this correctly models the potential execution paths for analysis, apply-

ing the node’s full WCET to each unfolded instance can lead to pessimistic (safe,

but potentially loose) response time bounds if the actual execution is conditional or

significantly shorter for certain triggers.

• Timer-Based Fusion. If a node subscribes to multiple topics, buffers the data inter-

nally, and uses a separate periodic timer callback to process the fused data and publish
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TOPIC

(a) before unfolding (b) after unfolding

Figure 3.7: Unfolding of a ROS 2 Graph into a Forest. Timers in purple, subscriptions in
blue
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it, our model handles this naturally. The subscriber callbacks form the ends of their

respective upstream DAGs. The timer callback forms the root of a new separate DAG,

as its execution is triggered by its timer, not directly by the arrival of input messages

via DDS.

Now that we’ve established the mapping to a DAG task model, we next describe how to

make use of the events executor to create a fixed-job-level-priority scheduler.

3.2.5 Executor Design

Prior work [111] demonstrated the usefulness of the new ROS 2 events executor for scheduling

task chains on a uniprocessor. We now present a queueing mechanism for the events executor

that enables ROS 2 to schedule general DAG tasks as well, with fixed-job-level-priority

scheduling.

In [111], a scheduler segregates a release thread from a scheduler thread. During DDS events,

received messages insert an event object into a priority queue (also introduced in [111]).

The decision about which subtask to release depends entirely on the implementation of the

delegator’s priority queue. This is one of the primary benefits the events executor has over

the original ROS 2 executor. By default, it is a FIFO scheduler. However, by replacing this

events queue with compatible alternative implementations, other scheduling paradigms can

be created. In a traditional first-task-priority scheduler (FTP), all subtasks in the graph

(in our case, chain/tree) inherit the same priority as their parent. In a pub/sub system

such as ROS 2, the linkage between parent and child is not readily apparent. Even if a

ROS 2 executor tracked the relation between publisher and subscriber, a single topic can

have multiple publishers. So a subtask may have multiple parents, with no obvious way to

distinguish which triggered the release of an individual job.

We propose a queueing mechanism that allows children to infer which parent triggered their

execution and inherit the appropriate priority. It consists of 2 queues:

• Priority queue for root subtasks. Released timer subtasks are kept in a min-

heap (or max-heap) sorted by some fixed priority, such as their period for a rate-

monotonic scheduler. This queue may include externally driven subscribers, if there
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is a mechanism to specify their priority. It is referenced in Algorithms 7 and 8 as

root queue

• LIFO queue for child subtasks. All other subtasks, like subscriptions and services,

are held in a LIFO queue. Each entry is paired with a priority, which is initially

undefined, but is set on the next scheduling decision. This queue is also sorted by

priority, per the discussion in Section 3.2.6. It is referenced in Algorithms 7 and 8 as

child queue

The release logic is simply sorting a new subtask into the appropriate queue, as shown in

Algorithm 7. Root subtasks are assumed to have some known priority (based on a period,

deadline, or some fixed value), and child subtasks leave this value undefined.

Algorithm 7 Release Logic

1: if event.priority is defined (event is timer) then
2: root queue.push(event)
3: else if event.priority is undefined (event is subscription) then
4: event.priority = latest priority
5: child queue.push(event)
6: end if

The scheduling logic is detailed in Algorithm 8. Whenever a job is scheduled, its priority is

recorded. This is assumed to the be the priority of all subscribers released until the next

scheduling decision. Any new subscribers that are released will inherit this priority at the

next scheduling decision.

Algorithm 8 Scheduling Logic

1: if root queue.top.priority > child queue.top.priority then
2: latest priority = root queue.top.priority
3: schedule root queue.pop()
4: else
5: latest priority = child queue.top.priority
6: schedule child queue.pop()
7: end if

When a subtask is scheduled, the DDS communication layer, which manages messages and

communication, is queried for the message data to pass to the subtask’s callback. To ensure

that the correct instance of a subscriber is released, the underlying DDS layer also should
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be configured to release messages in LIFO ordering. Subscription events are released in

LIFO order, but the messages they operate on are only passed to them after scheduling.

Thus, it is crucial that the underlying DDS message queues are also LIFO ordered, since

otherwise multiple instances of a single subscription may be assigned the wrong message at

scheduling. This would be equivalent to running different jobs of a subtask out of order,

which is undesirable.

3.2.6 Analysis

In this section, we show that a ROS 2 application running on the events executor with our

specialized queue implementation is analytically equivalent to a fixed-priority tree scheduler

on a uniprocessor system. That is, the application will generate the same schedule as a

conventional fixed-task-priority tree scheduler if given the unfolded equivalent of a ROS 2

application’s graph. We focus on limited preemption because ROS 2 executors cannot be

preempted during the execution of a subtask, but subtasks from different trees are allowed

to interleave, so the task as a whole has limited preemption.

We first assume that subtasks at the root of a tree have some known integer-valued priority

for each job release. This may be a fixed priority, or can vary between job releases (such

as a deadline for EDF). This priority is inherited by all subtasks. These root subtasks are

naturally the first to run. In the following lemmas, we will lay out the natural ordering of

scheduled subtasks and the priorities they have in association with each other.

Lemma 1. When idle, the only subtasks that may be eligible for release are the root subtasks

of each tree.

Proof. Since the system idles, the two queues specified in Algorithms 7 and 8 are empty, by

definition of a greedy scheduler. Since we stipulate that all child subtasks are released as

soon as their parent complete, no new child tasks will become eligible after the last task has

completed. Since the root subtasks are triggered periodically, they are the only ones that

can be released when no other subtasks are running.

Lemma 2. Any newly released child subtask will have a priority equal to the subtask that

just finished execution.
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Proof. In our system model we require that children are released immediately upon the

parent finishing and no later. Therefore it would be contradictory to assume anything other

than the subtask that just finished is the parent of the child subtask that was released. By

definition of FJP, a child inherits the priority of its parent.

Lemma 3. Any unscheduled subtask, τa, in the events queue must have a priority equal to

or less than the currently running subtask, τb.

Pa ≤ Pb

Proof. By contradiction: Otherwise τa would have been scheduled instead. Since our sched-

uler is nonpreemptive, no new events would have been enqueued by Algorithm 7 since the

last scheduling decision.

Lemma 4. Any element placed into the children queue from Algorithm 7 will always be the

highest priority element.

Proof. Any child subtask, τc, released at the completion of subtask τb must have the same

priority as subtask τb, by Lemma 2.

Pb = Pc

Therefore, applying Lemma 3, any already released subtask τa must have a lower priority.

∀τa,∀τc ≻ τb|Pa ≤ Pb

=⇒ Pa ≤ Pc

We can impose the rule that ties are broken in LIFO order, based on release eligibility.
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Lemma 5. Any element removed from the LIFO queue will always be the highest priority

element.

Proof. Lemma 4 combined with definition of LIFO.

Theorem 2. The highest-priority subtask will always be scheduled next by Algorithm 8.

Proof. In Algorithm 8, only the top subtasks of the roots queue and children queue are

compared. Per Lemma 5, the children queue is functionally a priority queue. Therefore, the

two head subtasks have higher priority than any other subtasks in their respective queues.

The greater of the two is guaranteed to be a higher priority than any released subtasks.

Therefore, scheduling Algorithm 8 is guaranteed to schedule the highest priority released

job.

Additionally, this proof considers priorities of individual instances of subtasks to be indepen-

dent from each other. Therefore, it’s compliant with any job-level fixed-priority scheduler.

This assumes that all constraints we detailed in Section ?? are kept, and the DDS layer has

been configured to release messages in LIFO order as well.

3.2.7 Extension to non-LIFO queues

The events queue design in Section 3.2.5 above uses LIFO-ordering for new subscriber jobs.

However, we are not aware of any ROS 2 communication middleware that supports LIFO

message queues. This means that even when jobs are executed in the correct order, the

messages for them to process would be given in the wrong order. This would be equivalent

to running different jobs of a specific subtask out of order, which is undesirable. This work

provides a motivating usecase for the implementation of LIFO message queuing. Even when

LIFO queues are not available, a subset of applications is still schedulable. Specifically, if

guarantees can be made that there will never be more than one released job of a task at

a time, then the inversion from lacking a LIFO message queue never occurs. Such specific

applications are detailed as follows.

Lemma 6. Any queue that always has at most one element is functionally a LIFO queue.
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Proof. In a queue of size one, the only element able to be removed is the head element, so

removing it abides by the LIFO definition.

Lemma 7. If a subscription C with response time RC is the only subscriber for a topic and

its parents A,B, . . . , with response times RA, RB, . . . are harmonic with a sufficient phase

shift, then the message queue for that subscription’s topic will never have more than one

message in it. Sufficient means that the taskset owning A,B,C, . . . is strictly periodic and

tRA +RA +RC ≤ tRB

tRB +RB +RC ≤ tRA + TA,

where tRx is the release time of x, occuring at timepoints ϕx + kTx | k ∈ N. Without loss of

generality, this extends to more than 2 parents by applying these conditions to each pair of

parents.

Proof. A job/message x is added to the queue at each job release, tRx, and will be removed

by the time that job completes tRx +Rx.

The subscription task in question has a release time of tRC = tRA + RA, where A is the

triggering parent. It is removed from the message queue by the pessimistic timepoint

tRA +RA +RC

By the given conditions, this is earlier than the release of the next parent, tRB. Therefore

the queue will be empty by the time the next job is released, and that job will be removed

before the next, and so on.

The events queue will only have either zero or one jobs of this subscription.

Theorem 3. Even if the message queue isn’t configured to be LIFO order, the highest-priority

subtask will always be scheduled next by Algorithm 8 if the conditions formulated in Lemma 7

hold.

Proof. If the conditions in Lemma 7 are true, then the message queue has a maximum size

of one. Consequently, due to Lemma 6, the queue is functionally a LIFO queue. Hence,

Theorem 2 can be applied.
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Applying Existing Schedulability Tests and Response Time Analysis

Our executor design implements a LP-FJP policy, where subtasks run non-preemptively,

but preemption can occur between subtasks. Furthermore, as shown in Section 3.2.3, ROS 2

graphs can be modeled as a forest of DAGs (trees) for analysis. Therefore, established

analyses for LP-FJP scheduling of DAG tasks on uniprocessors are directly applicable.

Specifically, the analysis provided by Nasri et al. [92] addresses this exact model (LP-FJP for

DAGs). Their analysis tool [93] considers factors like release jitter and execution jitter, and

supports multiprocessor analysis, though we focus on the uniprocessor case here. We utilize

this specific analysis [92] in Section 3.2.8 to calculate the theoretical worst-case response

times (WCRTs) for comparison with our experimental results. Using an analysis designed

for the target scheduling policy (LP-FJP DAGs) is crucial for accurate validation, as opposed

to analyses developed for different policies like the default ROS 2 executor [29].

When applying these analyses, one should use the eligibility time (the time a subtask could

run if the executor were free and it had highest priority) as the conceptual release time for

the analysis calculation. The term ‘release time’ used elsewhere in this work refers to the

point in time when a subtask is enqueued into the events queue, which occurs at scheduling

points.

3.2.8 Evaluations

This evaluation is divided in two parts. In the first part, we implemented the queue detailed

in Section 3.2.5 for a RM fixed priority scheduler, as well as one for EDF. We first apply

the analysis provided by [92] to a synthetic taskset. If our executor truly maps to a Limited

Preemption Fixed Job-Level Priority scheduler, we would expect their analysis to accurately

bound WCRT. This bound is compared to an empirical evaluation in Section 3.2.8.

We then present a more empirical measure of performance by assessing the performance of

our proposed executor design from Section 3.2.5 compared to the existing events executor,

as well as the default ROS 2 executor. We use the Autoware Reference Benchmark, which

is intended to compare the performance of different executor designs.
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We are limited to a synthetic taskset and the Autoware Reference Benchmark because,

as mentioned in Section 3.2.7, no communication middleware currently available provides

LIFO-ordered message queueing, which violates the assumptions found in Lemma 5. The

synthetic evaluation in Section 3.2.8 is data-agnostic, so by tracing scheduling decisions,

the hypothetically LIFO-ordered child subtasks can be reassigned to their correct parents

in evaluation post-processing. The Autoware Reference Benchmark (also in Section 3.2.8)

satisfies the condition in Lemma 7, and therefore our analysis holds, according to Theorem 3.

All experiments are run on a Raspberry Pi Model 4, pinned to a single core with the timer’s

management thread in the events executor assigned a higher priority, as suggested in [111].

We report the 99.7th percentile of response times to exclude rare outliers potentially caused

by system noise (e.g., OS jitter) rather than by the scheduling algorithm itself. All experi-

ments are conducted for 10 minutes, over multiple hyperperiods.

Synthetic Many-to-Many Topic

To demonstrate that our analysis holds for an unfolded graph, we replicate the same appli-

cation shown in Figure 3.7 and vary the WCETs of subtasks to create 3 different utilization

levels. Utilization levels are approximate and rounded to even numbers for simplicity. Since

this experiment does not use a LIFO-compliant middleware, we take measures to counteract

the effect where subsequence jobs from a specific subtask are misordered. Since all data is

arbitrary in this synthetic evaluation, jobs of a particular subtask are fungible. That is, if

job xi of subscription subtask x is scheduled to run, it does not matter if it is given the data

for job xj instead, provided the WCET and priority match the intended job that should run.

In post-processing, we identified when each child subtask was released (i.e., when its parent

completed) and when it was scheduled. The response time is calculated as the difference

between these two timestamps. This correctly measures the scheduling delay introduced by

our executor, bypassing the message-data mismatch that would occur from a FIFO message

queue.

Each application is centered around a single topic with three publishers and two subscribers.

Each publisher has a different period. After unfolding, we can model this application as

a forest of 3 trees, each with 1 parent and 2 children. We created three variations of this
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Table 3.2: WCET of Subtasks in Synthetic Tasksets

Parent by Period Children
Utilization 25ms 41ms 51ms A B

50% 1ms 1ms 5ms 2ms 2ms
70% 2ms 1ms 12ms 2ms 2ms
90% 3ms 1ms 12ms 2ms 4ms
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Figure 3.8: Response times for the synthetic task set compared against the WCRT bounds
from analysis [92]. Task A, B, and C correspond to the root tasks with periods 25ms, 41ms,
and 51ms, respectively. Red lines indicate the analytical WCRT.

taskset for different utilization levels of (approximately) 50%, 70%, and 90%. The WCET

times for each subtask in each taskset are illustrated in Table 3.2.

The unfolded forest is entered into an analysis tool [92, 93], which provides a WCRT across

the entire tree for each job with both RM and EDF scheduling.

Results are shown in Figure 3.8. Our measured WCRTs closely match the predicted WCRTs

from the analysis. The analysis for the 90% utilization scenario with RM scheduling predicts

deadline misses for Task A and Task B, which highlights that the task set is not schedulable

under these conditions. Our executor’s behavior aligns with this analysis.

Autoware Reference Benchmark

We also compare our executor’s performance to existing executors in the Autoware Reference

Benchmark, a simulated version of the Autoware application detailed in [100], which includes
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Figure 3.9: Autoware Reference Benchmark Executor Comparison

interconnected timers and subscriptions.9 Specifically, we measure the end-to-end latency of

the hot path defined in the benchmark from the front and rear LiDAR sensors to the object

collision estimator (c.f. the Autoware reference system), as this latency is a key metric for

responsiveness in crash avoidance. The data at the start of the hot path is generated at a

frequency of 10Hz.

Results are shown in Figure 3.9. The default and events executor perform the worst, but are

still consistently within the implicit 100ms deadline of the hotpath. However, with our RM

and EDF modifications to the events executor, the worst case is consistently under 25ms.This

represents a 63% improvement over the default executor, and a 61% improvement over the

events executor. In addition to a better WCET, there is less variability as well.

3.2.9 Conclusions and Future Work

Prior literature [20, 29, 33, 110, 114] has catered to the limitations of the default ROS 2

executor. Those contributions quantify its behavior and propose multithreaded work-arounds

rather than directly addressing the blocking caused by the processing window. In contrast,

9https://github.com/ros-realtime/reference-system/blob/main/autoware_reference_system/

README.md
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our work builds on the events executor, which isn’t affected by the processing window.

Scheduling decisions are made after each executed job, making it compliant with a limited-

preemption scheduler. Additionally, the response-time analysis provided by prior literature

has focused on chains. Our work not only provides support for general branching graphs,

but it does so with minimal retooling required and without the need for a priori application

analysis and graph decomposition, as is the case with PiCAS [33].

This work introduces a novel abstraction with which ROS 2 applications can be analyzed as

forests of trees. It also presents a new design for an events queue that supports arbitrary

fixed-job-level-priority schedulers, and naturally honors the precedence relations between

subtasks without needing to be aware of them. Finally, it provides an analysis proving that

the events executor using our queue is behaviorally identical to a conventional scheduler

operating on the unfolded equivalent of our application. Our analysis and empircal evaluation

confirm that the schedules created are identical (subject to arbitrary tie-breaks). This further

closes the gap between established real-time literature and ROS 2 scheduling analysis.

The primary limitation to this work is the necessity for a LIFO message queue, which is not

to our knowledge provided by any commercially available or open-source DDS middleware.

Integrating that feature into an existing open-source middleware framework is a natural

direction for future work, to broaden the applicability of the approach presented here beyond

the currently targeted set of applications meeting Theorem 3’s conditions (e.g., harmonic

periods). Future work also could explore extending this model to mixed-criticality systems

or handling other preemption constraints.

3.3 Commentary on Multi-threaded Schedulers

While the work presented in this chapter focuses on uniprocessor scheduling, a natural

extension is to consider multi-threaded and multi-processor systems. However, extending

graph-aware scheduling to such systems in ROS 2 introduces significant challenges that are

not present in the single-threaded case. This section discusses these challenges, focusing on

two primary issues:

1. The inherent information erasure in the pub/sub paradigm that obscures the parent-

child relationship between consecutive subtasks.
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2. The necessity of handling mutual exclusion, an established feature of ROS 2.

3.3.1 The Information Erasure Problem

One of the biggest limitations of extending the work above to multi-threaded schedulers lies

with the inherent information erasure of the pub/sub paradigm. As discussed in Paper 2,

knowing a subtask’s parent is crucial for making graph-aware scheduling decisions. In a

single-threaded system, the parent of a newly released subtask is unambiguously the most

recent subtask to have executed.

This is not the case in a multi-threaded system. When multiple publisher subtasks are

allowed to run concurrently on different threads, a message could be published at any point

during their execution. If a topic has multiple publishers, there is currently no standard

way to discern which publisher instance is associated with a given incoming message. This

ambiguity makes it impossible to reconstruct the complete dataflow graph at runtime, which

is a prerequisite for graph-aware scheduling.

This limitation can be addressed in two ways:

1. Message Decoration: One could extend the ROS 2 Interface Definition Language

(IDL) [59] to allow for metadata to be embedded within messages. This metadata could

carry information about the parent task, allowing the scheduler to identify the origin of

each message. While this also could be implemented manually by developers modifying

their message definitions, such a solution would not be as portable or generalizable

across applications.

2. Architectural Constraints: Another approach is to constrain the system architec-

ture to avoid ambiguous dataflows. One could group chains of callbacks together so

that a parent always executes in the same thread as its children, ensuring a clear line

of succession. This approach has been pursued in prior work. For example, [33] offers

a solution that assigns callbacks to specific threads a priori to group chains together

and avoid branching.
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Figure 3.10: Unfolding of a ROS 2 graph with locks. Callbacks in the same mutual exclusion
group (see nodes B and C) are modeled with a shared lock that is passed to their virtual
copies created during graph unfolding.

3.3.2 Mutual Exclusion and Schedulability

Even if the information erasure problem is solved, any multi-threaded ROS 2 scheduler must

contend with mutual exclusion. By default, callbacks within the same node are mutually

exclusive to prevent race conditions on shared memory. This can be configured more granu-

larly with callback groups, but the principle remains: tasks within the same mutual exclusion

group are not allowed to execute concurrently.

This constraint is irrelevant for a single-threaded executor, as two tasks can never run at the

same time. In a multi-threaded executor, however, it becomes a critical source of blocking. A

high-priority callback may become ready but be unable to execute if a lower-priority callback

from the same mutual exclusion group is currently running on another thread.

Fortunately, this behavior can be modeled and analyzed using existing real-time systems the-

ory. We can model each mutual exclusion group as all requiring a shared resource protected

by a lock. All callbacks belonging to that group must acquire the lock before executing and

release it upon completion. This transforms the problem into one of scheduling real-time

DAGs with shared resources, a well-studied area.

This approach lifts the common, but often impractical, requirement that all callbacks must

be reentrant (i.e., not block one another). By explicitly modeling the non-reentrant behavior

as locking, we can analyze its impact on schedulability. The analysis for DAG tasks with

locks from [42] is particularly relevant. This work provides schedulability tests and processor

allocation bounds for DAGs under federated scheduling that contend for shared resources.
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For instance, an upper bound on the number of processors required for a task is given by:

n =

⌈
C +BC − L−BL

D − L−BL

⌉
(3.5)

Where C and L are the work and span of the graph, D is the deadline, and BC and BL

represent the additional work and span introduced by blocking on locks. Such analysis

would be critical for providing real-time guarantees in a multi-threaded graph-aware ROS 2

executor. Figure 3.10 illustrates how callbacks in a group can be modeled with a shared

lock.

3.3.3 Research Scope

Initially we had planned to include multi-threaded scheduling within the scope of this work.

However, due to the significant implementation and analysis complexities required to robustly

address the information erasure and mutual exclusion problems, we chose to focus on the

uniprocessor case. We believe that the insights from Sections 3.1 and 3.2 provide a solid

foundation for future explorations into multi-threaded graph-aware scheduling in ROS 2.

3.4 Conclusion

This chapter has explored two distinct approaches for providing real-time scheduling guar-

antees for ROS 2 applications, both building upon the modern events executor. The con-

tributions from the two papers presented offer complementary solutions to the problem of

predictable execution in ROS 2.

The first paper demonstrates how to make the events executor compatible with the classical

real-time model of periodic task systems. Its analysis is tailored for ROS 2 applications that

can be decomposed into a set of independent callback chains. Its applicability is limited to

systems with only the simplest graph structure: isolated chains and single periodic callbacks

with no downstream children. This approach provides a vital bridge to classical scheduling

theory, enabling the use of mature analysis techniques for a significant class of ROS 2 systems.
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The second paper extends this work to address more generic applications. It embraces the

inherent complexity of arbitrary DAG structures, where dataflows can branch and merge

freely. It introduces a model for a graph-aware fixed-job-level-priority scheduler where sub-

scription callbacks inherit the priority of the publisher that triggered them. This allows us

to treat an entire tree in a ROS 2 graph as a single parallel task for analysis purposes. We

also demonstrate how, due to scheduling behavior in ROS 2, arbitrary ROS 2 graphs can be

modeled as a forest of trees for our analysis.

As discussed in Section 3.3, extending this work to multi-threaded environments is a signif-

icant challenge due to the information erasure inherent in the pub/sub paradigm and the

complexities of managing mutual exclusion. Nonetheless, the results in this chapter lay a

critical foundation for uniprocessor scheduling and clearly pinpoint the open problems that

must be solved before similar guarantees can be offered for multi-threaded ROS 2 systems.
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Chapter 4

State Estimator Handoffs in

Safety-Critical Systems

The prior two chapters established the infrastructure needed for predictability in component-

based applications. Hazcat removed non-deterministic data copies, and the redesigned ROS 2

executor supplied analyzable scheduling. This final chapter asks a complementary question:

how can control algorithms exploit those timing guarantees?

As part of a collaboration with colleagues at Purdue University we are investigating mixed-

criticality control with elastic scheduling. Near a point of stability, a controllable system

can be modelled linearly with a Kalman filter (KF), which provides fast, low-cost estimates.

When the operating point drifts outside that linear region the state estimator must transition

to a higher-fidelity Extended or Unscented Kalman filter (EKF/UKF), effectively a mixed-

criticality mode change. We assume a handover window : the finite interval between the

decision to switch and the instant at which estimates from the new filter are first used.

During this window the two filters may execute concurrently, share state, and must still

meet their respective deadlines.

In addition to leveraging the existing memory and scheduling work, this project was also

meant to showcase the use of multiple hardware accelerators in a single application. We

hypothesize that the nature of FPGAs compared to GPUs makes them better suited to dif-

ferent tasks. For basic parallelism, GPUs are shown to fare better, as demonstrated later

in Figure 4.3. However, the highly pipelined nature of FPGAs makes makes them better

suited for applications where successive events are independent and can be run concurrently.

FPGAs’ customizable fabric also allows them the flexibility to implement data-wide opera-

tions that are not strictly parallel (such as the parametric Jacobian functions of an Extended

Kalman Filter, detailed later in Section 4.3.2).
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In this Chapter, we derive timing-aware switching policies and demonstrate, analytically,

that the hand-off can be performed without violating real-time constraints. The chapter

therefore illustrates a scenario for how control and scheduling can be co-designed atop the

middleware layers developed earlier, and describes how the use of hardware accelerators may

be incorporated.

4.1 Preliminary Work

In preparation for implementing the control system on an FPGA, I started preliminary work

on a BLAS library on which to build state estimators. The FPGA implementations of these

state estimators were never realized, in favor of the more interesting theoretical aspects of

this project. However, the BLAS library by itself yielded results, including surpassing some

vendor-supplied BLAS operations, so I include it here.

My library, DYFC BLAS [96], was developed as a competitor to the vendor-supplied Vitis

BLAS library [3]. It was written in High Level Synthesis (HLS) C++ and developed with

the following ethos:

• Documentation: In contrast to AMD’s documentation for their BLAS library, DYFC

BLAS was built with unit testing, examples, and thorough documentation from the

start. Every operation had a simplified default form that new developers could fall

back on, and all the advanced operations needed to optimize performance were well

documented with concrete and tested examples.

• Ease of use: The library was designed to be as Pythonic as possible to use. In

the original Vitis BLAS library, the user had to specify data arrangements manually

when using BLAS operations (such as general vs symmetric matrices or row-major vs

column-major). In DYFC BLAS, all matrices are treated the same by default, and some

basic data-ordering optimization was done automatically. Developers had the option to

initialize a matrix manually in a more optimized arrangement, and compiler warnings

would be thrown if a more efficient arrangement was possible. But the interface was

kept as simple as possible, using reasonable assumed default behavior to expedite

development.
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• Provable Performance: The entire project was developed with an integrated CI/CD

pipeline complete with automated benchmarking. That way, any changes made to the

codebase would have their performance impact clearly quantified. This promotes the

exploration of new designs and optimizations, and dissuades any feature bloat that

inhibits performance.

4.1.1 DYFC BLAS Performance

AMD has publicized performance numbers [2] for their own Vitis BLAS library [3], but these

are not reproducible. They only publish numbers on their gemv and gemm operations, and

the links to the benchmarks that created these are broken. Below is a non-exhaustive list of

the working operations in DYFC BLAS, with comparisons to the advertised (but unverified)

numbers from Vitis BLAS, where possible.

(a) Vector Addition Performance (b) Dot Product Performance

(c) Prefix Sum Performance

Figure 4.1: DYFC BLAS performance across different operations.

In Figures 4.1 and 4.2 I present the estimated clock cycles to complete one iteration of the

kernel in hardware emulation.
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(a) Matrix-Vector Multiplication Perfor-
mance

(b) Matrix-Matrix Multiplication Perfor-
mance

Figure 4.2: DYFC BLAS performance comparisons across different operations.

Most notably, my implementation of the gemv operation was able to outperform the Vitis

BLAS library. In Figure 4.2a, both my BLAS library (DYFC) and the vendor’s implementa-

tion (Vitis) are running on a 3ns clock cycle. It should be noted that there are two different

implementations of the gemv operation: one for a column-major ordered matrix, and one for

row-major order. The latter is not able to scale down to a 3ns clock cycle, but synthesizes to

a highly comparable cycle count to the column-major implementation at slower clock speeds.

In Figure 4.2b, we see that my implementation of the gemm operation is notably slower

than the Vitis BLAS library. This is likely due to the fact that I use a naive implementation

of the gemm operation, whereas the Vitis BLAS implementation was likely a systolic array,

the accepted standard implementation for gemm on FPGAs.

When we compare my FPGA implementation of the gemv operation to the cuBLAS imple-

mentation on a GPU (Figure 4.3), we see that the FPGA’s performance is beaten by an

order of magnitude. The GPU used, the A5000, is approximately half the cost of the chosen

FPGA, the U250. There is a constant overhead of about 10 µs in the GPU implementation,

making the FPGA faster at smaller matrix sizes but the performance benefits of the GPU

quickly dominate for matrices larger than approximately 300 × 300. This highlights the

superiority of GPUs over FPGAs for these types of highly-parallelizable linear operations.

Work on this library is still incomplete, but it promises to be a useful and accessible frame-

work for future high-performance computing applications developed in HLS for FPGAs. We
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Figure 4.3: Performance comparison of Matrix Vector Multiplicaton FPGA vs GPU

now return our attention to the control-scheduling problem that forms the core of this chap-

ter. This work was done in collaboration with the rest of my lab at Washington University

in St Louis.

4.2 Introduction

It is often convenient and less resource intensive to model and control system dynamics

as being linear, to the extent possible. However, dynamics of cyber-physical systems in

application domains ranging from real-time hybrid simulation experiments for earthquake

engineering [37] to avionics [108] may become non-linear under conditions that are reasonably

commonplace. In those cases and others (e.g., due to instability induced by environmental

disturbances), the system state may deviate from a linear operating region such that linear

state estimation is no longer sufficiently accurate.

State estimation using nonlinear models may be needed for accurate tracking in such cases,

but often is significantly more intensive computationally. If a maximum acceptable error

threshold can be characterized (e.g., informed by tolerances on some states of the real-world

system or the stability bounds of the state estimators used), and bounds on the estimation
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error can be deduced at run-time, a decision procedure then can be defined for switching

between linear and nonlinear estimators. Specifically, for efficiency of resource usage a lin-

ear estimator may be used as long as the error remains some distance from the threshold.

However, as the error approaches within some metric distance of that threshold (i.e., tracked

as an estimation error norm) the system must switch to a nonlinear estimator (and must

do so in a sufficiently timely manner) so that the threshold is never exceeded. Similarly,

another threshold may be defined to trigger switching from the nonlinear estimator back to

the linear one when the error recedes a sufficient distance from the maximum acceptable

error threshold.

Co-designing scheduling and control parameters so that cyber-physical systems may respond

rapidly to such changing environments is also a first-class concern. Recently, Sudvarg et

al. [108] showed how to calculate bounds on rates of change in a control norm relative

to a bounded radius of reachable system states between two consecutive jobs of a control

task. They used those bounds in a control barrier function to compute response times

that if respected ensure positive invariance within safe control regions for systems with

non-linear dynamics, even if the control task changes its strategy between consecutive jobs.

Finally, they showed that for implicit deadline scheduling models (e.g., partitioned EDF)

it is straightforward to calculate control task periods to ensure those response time bounds

are met. In this chapter we adapt those methods to the related problem of when to switch

between different state estimation strategies.

This motivates a complete approach to scheduling control strategies that use linear state

estimation within linear regions, but switch to nonlinear state estimation when leaving them.

Doing so safely and with assurance of schedulability poses important research questions that

we address here:

• How can regions of linearity be defined to ensure appropriate estimation methods are

used both inside and outside of them?

• How can a system detect when it is departing or re-entering a region of linearity?

• How can a system maintain safety across transitions between linear and nonlinear state

estimation?

• How can constraints and optimization objectives be combined to determine when a

control strategy should switch between linear and nonlinear state estimation?
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• How can we incorporate the probabilistic nature of state estimators into that decision

making?

The rest of this chapter is structured as follows: In Section 4.3 we present background

information on linear and nonlinear state estimation. In Section 4.4 we formalize control

and scheduling aspects of our system model. We describe how our system model can be

used to enforce safety properties in Section 4.5, and in Section 4.6 we describe how such

enforcement can be applied to the problem of switching between different estimators of the

system’s state. Finally, in Section 4.7 we provide concluding remarks and discuss avenues of

future work.

4.3 Background

As background, we discuss four widely-used state estimation techniques: Kalman Filter

(Section 4.3.1) for linear dynamics and Extended Kalman Filter (Section 4.3.2), Unscented

Kalman Filter (Section 4.3.3), and Particle Filter (Section 4.3.4) for nonlinear dynamics.

Each of them has a prediction step and an update step, and a Particle Filter may have an

additional resampling step.

4.3.1 Kalman Filter

A Kalman Filter (KF) [70] is a linear state estimator. The state is computed as a probability

variable, with a mean estimate and a covariance of uncertainty. For a state vector of size n,

the covariance matrix is of size nxn. If the individual state elements are independent from

each other, the covariance matrix will only be non-zero on the diagonal.

The filter works in two phases: prediction (Eq 4.1) and update (Eq 4.2). Prediction uses a

linear model of the system to increment the state estimation, but widens the variance of that

estimate. Update incorporates a potentially noisy measurement to update the prediction and

shrink the estimate’s uncertainty.

Prediction Step:
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x̂−
k = Ax̂k−1 +Buk

P−
k = APk−1A

T +Q
(4.1)

Where x̂ ∈ Cn is the estimated state, P ∈ Cn×n is the covariance matrix of that state,

u ∈ Cm is the input to the system, A ∈ Cn×n and B ∈ Cn×m are matrices that define the

linearization of the system’s state transition function, and Q ∈ Cn×n is the variance of any

disturbance that might affect the system state in parallel to the input.

Update Step:

Kk =
P−
k CT

CP−
k CT +R

x̂k = x̂−
k +Kk(yk − Cx̂−

k )

Pk = (I −KkC)P−
k

(4.2)

Where Kk ∈ [0, 1) is a ratio of how much to trust the predicted estimate versus the mea-

surement, y ∈ Cp is the measurement, and C ∈ Cp×n is a ”mask” selecting which portions of

the state are measurable. Strictly speaking, the update step is optional, and the the output

of one prediction step, x̂−P−, can be fed directly into the next prediction step.

4.3.2 Extended Kalman Filter

An Extended Kalman Filter (EKF) [103] is a nonlinear estimator. It operates similarly to a

Kalman Filter, but the EKF uses the nonlinear form of the state transition function, as well

as linearizing at the current state estimate.

The Jacobians of the state transition function and observation function are repeatedly re-

computed at the current state estimate.
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Fk =
δf

δx
|x̂k−1,uk

Hk =
δh

δx
|x̂−

k

Fk and Hk are analogous to A and B in the Kalman Filter. The natural connection between

KF and EKF should then be apparent. See the EKF prediction (Eq 4.3) and update (Eq 4.4)

steps below.

x̂−
k = f(x̂k−1, uk)

P−
k = FkPk−1F

T
k +Q

(4.3)

Kk =
P−
k HT

k

HkP
−
k HT

k +R

x̂k = x̂−
k +Kk(yk − h(x̂−

k ))

Pk = (I −KkHk)P
−
k

(4.4)

Where f(x, u) is the state transition function of the system and h(x) is the observation

function.

4.3.3 Unscented Kalman Filter

An EKF assumes that a probability variable is Guassian, and represents it with a mean

estimate and variance. This implicitly assumes the variable’s uncertainty is Gaussian. It

also assumes the model can be locally linearized.

An Unscented Kalman Filter (UKF) [119] (sometimes called the ”Sigma Point Kalman Fil-

ter” (SPKF) [9]) provides an alternative to the EKF for handling nonlinearities. Instead of

linearizing the system functions using Jacobians, the UKF selects a minimal set of sample
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points, called sigma points. These sigma points are chosen such that they capture the mean

and covariance of the state distribution accurately.

The sigma points are then propagated directly through the true nonlinear system functions.

The mean and covariance of the transformed points are recovered to form the predicted

state and covariance. This often leads to better fidelity than the EKF, especially for highly

nonlinear systems or when the state distribution significantly deviates from Gaussian after

being transformed by the nonlinear function.

Let n be the dimension of the state vector. The UKF typically uses 2n+1 sigma points: the

mean, n ”left” sigma points, and n ”right” sigma points. The generation involves tunable

parameters α, β, κ, with the following additional variables specified

W c
i =

 λ
n+λ

i = 0

1
2(n+λ)

i = 1..2n

Wm
i =

 λ
n+λ

+ (1− α2 + β) i = 0

1
2(n+λ)

i = 1..2n

λ = α2(n+ κ)− n

Prediction Step: The sigma points Xk−1 are first generated from x̂k−1 and Pk−1:

X0,k−1 = x̂k−1

Xi,k−1 = x̂k−1 + (
√

(n+ λ)Pk−1)i, left sigma points

Xi+n,k−1 = x̂k−1 − (
√
(n+ λ)Pk−1)i, right sigma points

Where (
√
(n+ λ)Pk−1)i is the i-th column of the matrix square root (e.g., Cholesky decom-

position).

Next, these points are propagated through the state transition function f

X ∗
i,k|k−1 = f(Xi,k−1, uk) for i = 0..2n
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The predicted mean and covariance (x̂−
k and P−

k ) can then be computed directly

x̂−
k =

2n∑
i=0

Wm
i X ∗

i,k|k−1

P−
k =

2n∑
i=0

W c
i (X ∗

i,k|k−1 − x̂−
k )(X

∗
i,k|k−1 − x̂−

k )
T +Q

Update Step: X ∗
i,k|k−1 can be further propagated through the observation function h to be

used in the update step, generating the updated mean and covariance (x̂k and Pk)

Yi,k|k−1 = h(X ∗
i,k|k−1) for i = 0..2n

ŷ−k =
2n∑
i=0

Wm
i Yi,k|k−1

Pyy =
2n∑
i=0

W c
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )

T +R

Pxy =
2n∑
i=0

W c
i (X ∗

i,k|k−1 − x̂−
k )(Yi,k|k−1 − ŷ−k )

T

Kk = PxyP
−1
yy

x̂k = x̂−
k +Kk(yk − ŷ−k )

Pk = P−
k −KkPyyK

T
k

While computationally more intensive than the EKF due to the need to propagate multiple

sigma points, the UKF avoids potential errors introduced by linearization and often yields

more accurate state estimates and covariance representations for nonlinear systems.

4.3.4 Particle Filter

Unlike Kalman-based filters (KF, EKF, and UKF) which represent the state uncertainty as

a Gaussian distribution (parameterized by mean and covariance), Particle Filters (PFs) [7]

represent the posterior probability distribution of the state using a set of random samples,

called particles. This allows PFs to represent arbitrary probability distributions.
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PFs approximate the posterior probability density function (the probabilty of the current

state given a history of measurements) using a set of N weighted particles {xk,i, wk,i}Ni=1,

where xk,i is the state vector of the i-th particle at time k, and wk,i is its corresponding

weight, such that
∑N

i=1wk,i = 1. The probability density function is approximated as a

”forest of spikes”:

p(xk|y1:k) ≈
N∑
i=1

wk,iδ(xk − xk,i)

where δ(·) is the Dirac delta function.

A common variant is the Sequential Importance Resampling (SIR) Particle Filter, which

operates in predict and update steps:

Prediction Step: Each particle is propagated forward in time using the system’s state

transition model f , additively including process noise qk−1.

xk,i = f(xk−1,i, uk) + qk−1,i

where qk−1,i is a sample of the process noise. At this stage, the weights wk,i are typically

carried over from the previous step or initialized uniformly if it’s the first step:

wk|k−1,i = wk−1,i

Update Step: When a measurement yk becomes available, the importance weight of each

particle is updated based on how well the particle’s predicted state matches the measurement,

according to the measurement likelihood function p(yk|xk,i), often derived from the observa-

tion model h and some known measurement noise distribution R. For example: Assuming

this distribution is known, the weights are calculated, and then normalized:

w̃k,i = wk|k−1,ip(yk|xk,i)

wk,i =
w̃k,i∑N
j=1 w̃k,j
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(a) Open-Loop System Model

Plant

State 
Estimator

Control

z

x̂u

(b) Closed-Loop System Model

Figure 4.4: System Models: Open-Loop and Closed-Loop

The state estimate x̂k can be computed as the weighted mean of the particles:

x̂k =
N∑
i=1

wk,ixk,i

Resampling Step: A key issue in PFs is particle degeneracy, where after a few iterations,

most particles have negligible weights. To mitigate this, a resampling step is performed.

Using the current weighted set of particles as a discrete approximation of the probability

density function, a new set of weighted particles N are drawn, and the weights normal-

ized. The exact algorithm used for resampling varies between implementations and we don’t

seek to provide an exhaustive list of examples here. Common resampling methods include

stratified [85], residual [85], and systematic [71].

The main drawback of Particle Filters is their computational cost, which scales with the

number of particles N . A large N is often required for good performance, especially in

high-dimensional state spaces, making them significantly more demanding than KF, EKF,

or UKF.

4.4 System Model

4.4.1 System Definition

Consider a nonlinear system, pictured in Figure 4.4. The system consists of a plant, a state

estimator, and, (optionally) a feedback controller. The plant receives an input u either from
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the control block or from an external source. This is forwarded to the state estimator as

well. We assume perfect, but not clairvoyant, knowledge of the control. Inside the plant

is the true state x. The plant has an output, z, which is fed into a state estimator which

outputs the estimated state x̂.

When the control feedback is absent, we say the system is open-loop. If the system uses

feedback, the estimated state x̂ is fed into the control block, and we say the system is closed-

loop. Without loss of generality, the setpoint is omitted from the diagram and assumed to

be zero.

This is inline with the traditional control framework, but we add an additional aspect: the

state estimator is dual-mode and can operate in either linear (KF) or nonlinear (EKF, UKF,

or PF) mode.

ẋ(t) = f(x(t)) + g(x(t))d(t)

where f : Rn → Rn×m and g : Rn → Rn×m.

Consider also the linearized equivalent of the system. We can approximate the state by

linearizing around x0, resulting in the approximate system

˙̂x(t) = Ax̂(t) +Bd(t)

Where A ∈ Rn×n and B ∈ Rn×m such that the two systems are equivalent at the linearization

point.

Ax0 = f(x0)

B = g(x0)

As the system evolves, the nonlinear model and the linear approximate may diverge. By

computing the difference between the nonlinearly modeled state x and linearly modeled state

estimate x̂, we can measure the linearization error as the system evolves over time.
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E = x̂− x

To aid in modeling this error, we combine the true state and the approximated state into an

expanded state-space.

x̃ = [ x x̂ ]

x, x̂ ∈ Rn

x̃ ∈ R2n

When the estimate is produced by a linear estimator, we can couple the nonlinear and linear

dynamics of our system to operate in parallel on our expanded statespace x̃.

˙̃x =

[
ẋ
˙̂x

]
=

[
f(x) + g(x)d

Ax̂+Bd

]

4.4.2 Reachable Sets

We also define a reachable set of a system as the set R of all states that are reachable from

some starting state x0 under admissible input disturbance d(·) ∈ K within some time t. K

is the set of admissible input functions.

R{x0, K, t} =

{x|∀τ, 0 ≤ τ ≤ t, d(τ) ∈ K, x(τ) = x, x(0) = x0}
(4.5)

The size of any reachable set is monotonically increasing with respect to t and the size of

K, i.e., given more time and larger inputs or disturbances, the reachable space will never

shrink. In Section 4.5.5, we discuss how to compute a reachable set.

119



The reachable set of our augmented linear/nonlinear system in Eq 4.4.1 also has an naturally

associated maximum linearization error.

E{R} = max
x̃∈R{x̃0,K,t}

|E(x̃)

This linearization error of the reachable set is also monotonically increasing with respect to

the bound time t and the admissible inputs K. If two of the three are known, the third can

be computed.

4.4.3 Requirements for System

We impose some limits on the system.

• Finite reachability The system must have some restoring mechanism, either intrinsic

or through closed loop feedback, such that for any admissible set K ⊂ Rm of the input

u(·) ∈ Rm, the set of all reachable states R{x0, K,∞} has a finite volume.

∀K ⊂ Rm|R{x(0), K,∞} ⊂ RN

In the rest of this chapter, we may abbreviate R{x0, K,∞} as R∞{K} or just R∞.

• Restorability The system must be able to return to initial conditions from any state

under the same admissible input that it reached that state ∀x ∈ R∞|∃u(·) s.t. u(t) ∈
K, x(0) = x, x(t) = x0

Theorem 4. If the system has finite reachability for some admissible set of inputs K, then

the resulting R∞{K} is robust invariant

Proof. By counterexample. To be robust invariant means that for any initial point x0 ∈
R{x0, K,∞}, all points x(t) reachable under admissable input function ∀t|u(t) ∈ K are also

in R{x0, K,∞}.
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∀t,∀τ ∈ [0, t], u(τ) ∈ K,

x0 ∈ R{x0, K,∞}

=⇒ x(t) ∈ R{x0, K,∞}

Suppose that R∞ isn’t robust invariant, so that there exists a point xb /∈ R∞ that is reachable

from xa ∈ R∞. By the definition of finite reachability above, xa is reachable from x0 for

some t ≥ 0. Therefore, xb is reachable from x0 by way of xa, and therefore xb ∈ R∞.

Contradiction.

4.5 Enforcing Safety

4.5.1 Construction of Barrier Certificates

We want to establish an invariant set L that forms a linear region, where the system uses a

linear estimator. We also want to establish an safeset C of all states x̃ ∈ C where x ≈ x̂.

The safeset C can be defined using a barrier certificate [99].

A barrier certificate B(x) : Rn → R is a level set function that indicates which states belong

to an associated set. When the barrier certificate evaluates to nonpositive for a state, this

certifies the state is in the associated set.

B(x) ≤ 0 =⇒ x ∈ X

B(x) > 0 =⇒ x /∈ X

We construct a barrier certificate where the linearization error E = x̂ − x is within some

bound ϵ

B(x̃) = ||x̂− x|| − ϵ

121



It’s important to point out that this barrier certificate equation is relatively arbitrary. Finer

error bounds can be imposed on individual state elements that have more stringent toler-

ances. If a control barrier function [5] must also be imposed on the true state x for purposes

of enforcing safe regions, or if regions need to be excluded for purposes of closed-loop stability,

these can be incorporated into the barrier certificate.

There is naturally a manifold atM = {x̃|B(x̃) = 0}. This manifold forms a bound between

the safeset C and the unsafe set CC . We define the safeset to be the region where the barrier

certificate is nonpositive, which certifies that x̂ ≈ x.

C = {x̃|B(x̃) ≤ 0}

4.5.2 Linear Region

In this section, we will define a linear region L. This is naturally a subset of C, and defines

the region where it is safe to operate the system using linear estimation. When the system

leaves this region, a transition to nonlinear state estimation is triggered, so the estimate

converges to the true state. It must be designed such that x̃ never leaves the safeset C, even
when in nonlinear mode.

To define the linear region, we consider the parameters that can inform the decision to

transition to nonlinear estimation.

For a statespace x ∈ Rn, the linear region L ⊆ C ⊂ R2n exists in a higher dimensional

statespace, because it depends on the linear and nonlinear dynamics of the system. In our

usecase, only an estimate of the linear state is known until the decision is made to switch to

a nonlinear estimator. The true underlying state x is governed by nonlinear dynamics and

is unknown.

The challenge then is to safely make decisions while only observing half the dimensions of x̃.

Suppose that the linear region is equal to some invariant reachable set over an infinite time

window.
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L = R{x0, K,∞}

We reemphasize that once the system is in a reachable set R∞, it will never leave while the

input remains within the admissible set K.

It is possible that a system may briefly have an input outside the designated bounds without

actually leaving R∞. Ideally, we would want to impose some predicate on the state estimate

x̂ such that if the predicate holds true, then temporary violations of the input constraint are

tolerated and the system remains in linear mode. However, this isn’t possible.

Theorem 5. There exists no predicate ϕ(x̂) such that ϕ(x̂) holding true guarantees x̃ ∈
R∞ = R{x̃0, K,∞}, if the input d(t) is allowed to deviate from the admissible set K at any

time.

Formally: If ∃τ, d(τ) /∈ K then ∀t ≥ τ, ∄ϕ(·) such that ϕ(x̂(t)) =⇒ x̃(t) ∈ R∞

Proof. We prove this by contradiction. Assume such a predicate ϕ(x̂) exists. This means

that if ϕ(x̂(t)) is true, then x̃(t) ∈ R∞, even if d(τ) /∈ K for some τ .

Consider a system with the augmented state dynamics as described in Eq. 4.4.1:

˙̃x =

[
ẋ
˙̂x

]
=

[
f(x) + g(x)d

Ax̂+Bd

]

Without loss of generality, let the linearization point for A and B be x0 = 0. Let R∞ =

R{x̃0, K,∞} be defined for a specific compact set of admissible inputs K.

Construct a specific polynomial input function g(x). For instance, let a component of g(x)

be xn
j for some state component xj and an arbitrarily large integer n > 1. Then the corre-

sponding component Bi in B = g(x0) would be ∂
∂xj

xn
j

∣∣
x0

= 0.

Now, consider the following scenario:

1. Initialize the system at x̃(0) ∈ R∞ such that ϕ(x̂(0)) is true.

2. Let the system evolve for some time with d(t) ∈ K, such that ϕ(x̂(t)) remains true and

x̃(t) ∈ R∞.
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3. At some time τ , apply an input d(τ) = dspike such that dspike /∈ K.

4. For t > τ :

• The estimated state x̂ evolves according to ˙̂x = Ax̂+ Bd. If Bi = 0 for the term

involving xn
j di, then x̂ will show little to no direct response to dspike through this

channel. It’s possible to choose A, B, and ϕ such that x̂(t) remains in a region

where ϕ(x̂(t)) is true (e.g., x̂ remains small).

• The true state x evolves according to ẋ = f(x) + g(x)d. The term xn
j dspike can

cause a significant deviation in xj, even if xj was small prior to τ , especially if

n is large. This can drive x(t) to a state that, when paired with x̂(t), forms

an augmented state x̃(t) that is no longer in R∞. This is because R∞ is the

set of states reachable *only* with inputs from K. By applying dspike /∈ K, the

trajectory is no longer constrained to R∞.

The ability to choose an arbitrarily large n for the nonlinear term xn
j ensures that for any

predicate ϕ(x̂) that defines a bounded region for x̂, and for any K, there exists some dspike /∈
K and n such that x diverges significantly from x̂ making x̃ leave R∞, while ϕ(x̂) remains

true. Therefore, no such predicate ϕ(x̂) can exist.

When in linear mode, the decision to transition to nonlinear must incorporate the input

signal, and not the state estimate.

For a given system and a specific g(x), it’s conceivable an ad-hoc predicate exists. However

since no general predicate exists, we aim to create a general definition of the linear region

that only considers the input signal in decision making.

In the next section, we will demonstrate how to computeK for the linear region L = R∞{K}.

4.5.3 Transitioning to Nonlinear

When making the decision to switch to nonlinear estimation, we must consider the time to

transition from linear estimation to nonlinear estimation.
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Optimistically, this transition time T would be equal to the sample period of the estima-

tors. However, we also consider the possibility that the transition may require additional

computation, initialization, and memory operations that last over multiple sample periods.

Suppose our linear region L is equal to some reachable set R∞{K}. As laid out above,

if u(·) remains within some K for τ ∈ [0, t] and x(0) ∈ R∞, then we can guarantee that

∀t ∈ [0,∞]|x(t) ∈ R∞.

Then to compute the linear region, we need to compute a set R∞ where the decision can be

made to transfer to nonlinear estimation based exclusively on the input u while taking into

account a transition time T , and guaranteeing no violations of the barrier certificate B(x̃).

First we quantify the valid states:

C = {x̃|B(x̃) ≤ 0}

This contains the green and yellow regions in Fig 4.5.

Now we consider the transition time T . This is the time between a violation of K and when

the nonlinear state estimator comes online. A buffer zone is added within the error manifold

M = {x̃|B(x̃ = 0)} to account for this transition time. This can be found using a Backwards

Reachable Set (BRS), a concept that will be covered more thoroughly in Section 4.4.2. To

compute the BRS of a set of states, we need to impose a lookback time (naturally T ), and
some limits K on the input to the system d. This is distinct from the K denoting the region

of linearity discussed previously; K is informed by the physical constraints of the system,

rather than any limits of linearity. It denotes is the largest magnitude of inputs that our

system can be expected to ever experience.

The BRS contains all states than can reach some specified manifold in the given amount of

time, under those input constraints. This is indicated by the green and yellow striped region

in Fig 4.5.

We now define a safe zone

S = {x|x ∈ C ∧ x /∈ BRS(M)}
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R{x0,uMAX,∞}

B(x)>0

BRS(B(x))

Figure 4.5: R∞ in blue, C in green, S in solid green, BRS in yellow, invalid points in red

S is all the states in C that aren’t in the BRS of the error manifoldM. This is indicated by

the solid green region in Fig 4.5. It is possible that S = ∅, in which case, there is no region

of linearity that we can safely transition from in time. If this is the case, design your system

to minimize the transition time T , or limit the admissible inputs K to the system to be less

aggressive.

All states x̃ ∈ S can safely transition from linear to nonlinear if the determination is made to

do so. However, as stated previously, we cannot make this determination on the knowledge

of the states themselves. We need to compute a set of admissible inputs K such that

max
K
|R∞{K}| subject to R∞{K} ⊆ S

Which is to say, find the largest decision input such that the reachable set of the bound over

an infinite amount of time creates a subset of the safe set S. This reachable set is shown in

blue in Fig 4.5. This R∞{K} is our linear region.

126



It is possible that after the nonlinear transition is made, the state x̃ will still find itself in

S or even R∞. But it will never find itself outside of C, guaranteeing we remain within the

error bounds.

4.5.4 Transitioning to Linear

Eventually, a determination will be made that we need to transition back to a linear estima-

tor. This is much easier as we can make use of the state estimate, since the estimate more

faithfully follows the behavior of system.

For a nonlinear estimator, the assumption is made that x̂ ≈ x, subject to estimate variance,

discussed later in Section 4.6. Therefore, [x̂ x̂] ≈ x̃, and we can draw the conclusion that

when x̂ is produced by a nonlinear state estimator:

[x̂ x̂] ∈ R′
∞ =⇒ x̃ ∈ R′

∞

Where R′
∞ ⊂ R∞ is a smaller linear region that is computed just as described above, but

using a different transition time T ′ to compute the BRS, where T ′ ≥ T . This new transition

time T ′ represents not only the time to transition to linear, but also the time to immediately

transition back to nonlinear if needed. If the state estimators continue to operate during the

transition, and the transition can be aborted, then T ′ = T .

We also impose the restriction that d(t) ∈ K, to prevent immediately switching back to

nonlinear.

These two conditions are sufficient to determine the system is safely within the linear region

to warrant a switch back to linear estimation.

• d(t) ∈ K

• [x̂ x̂] ∈ R′
∞

127



4.5.5 Computing Reachable Sets

In order to derive an equation for the manifold encompassing the reachable set R∞ and the

BRS, we turn to the Hamilton-Jacobi (HJ) [8,16,32,79] partial differential equation, used in

optimal nonlinear control.

δV

δt
+H(∇xV, x) = 0

H(∇xV, x) = max
u∈K
∇xV ·Ψ(x, u)

(4.6)

V (x, t) is our level set function. It defines the boundary of our reachable set R(t) =

{x|V (x, t) ≤ 0}. The Hamiltonian H(∇xV, x) governs the maximum possible outward veloc-

ity of this manifold. ∇xV is the gradient normal to the manifold. The level set is initialized

to a signed distance function centered at x0 (when solving numerically, a small offset ϵ is

used, creating an ”inital set” forming a small hypersphere around x0).

V (x, 0) = ||x− x0|| − ϵ

Solving Eq 4.6 to derive V (x, t) gives us the evolution of the forward reachable set over time.

Then

R∞ = {x|V (x,∞) ≤ 0}

To compute the backwards reachable set, we use a similar partial differential equation

(Eq 4.7). The key difference is that we are now minimizing the Hamiltonian, rather than

maximizing it. Additionally, we initialize the level set at the terminal time T and evolve it

backwards in time.
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δV (x, t)

δt
+H(∇xV, x) = 0

H(∇xV, x) = min
u∈K

(∇xϕ) ·Ψ(x, u)

V (x, T ) = B(x)

(4.7)

Our level set function V (x, t) is now a value function representing the cost of controlling the

system optimally from x to the manifold of h(x) = 0 from time t to terminal time T .

V (x, T ) is initialized to equal our barrier certificate B(x). This level set indicates the error

manifoldM = {x|B(x) = 0}. To find the inside bound of the BRS, we solve the HJB PDE

to derive V (x, t). Then V (x, 0) is the inner bound. The BRS is all states that are certified

by the barrier certificate, but not by the value set V (x, 0).

BRS = {x|V (x, 0) > 0 ∧B(x) ≤ 0}

No closed form solution exists for the HJ partial differential equation, so numerical analysis

tools [26, 80] are required to approximate the reachability envelope for a system. These use

level-set methods, which are highly memory intensive and scale exponentially with state

dimensionality. For this reason, it is recommended to instead use random sampling and

machine learning for high-order systems [90,109].

4.6 Application to State Estimators

We now apply all the above work to the problem of transitioning from linear to nonlinear state

estimation, and vice versa. We begin by formulating the control semantics in Section 4.6.1

and then address how appropriate scheduling parameters can be calculated in Section 4.6.2.
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4.6.1 Control Semantics

As stated previously, the decision to switch to a nonlinear estimator is made considering

solely the input to the system.

When the input u(t) /∈ K, then no guarantees can be made that we will not enter the BRS

on the next sample, so we cannot guarantee remaining within the control barrier function

(CBF) h(x) ≥ 0.

Near the initial state, our system uses a Kalman Filter (KF) that models the system accord-

ing to linear dynamics. It returns a state estimate x ∈ Rn and an accompanying covariance

matrix P ∈ Rn×n to model the uncertainty of the estimate, which is assumed to be gaussian.

When a switch to nonlinear estimation is triggered, an Extended Kalman Filter is initialized

using the latest state estimate and covariance of the Kalman Filter, and the estimate of the

EKF immediately begins converging to the true state.

In the nonlinear mode, we assume that x ≈ x̂ subject to the variance in the estimate. To

account for this uncertainty, a window can be placed around each state element encompassing

an arbitrary confidence interval.

xi ± zi
√

Pii

Where zi is the number of standard deviations away from the mean estimate.

When this confidence window is entirely with the region encompassed by R∞, we say the

system has returned to linearity.

[x̂± z
√
diag(P ) x̂± z

√
diag(P )] ∈ R∞

Once the input is also valid d ∈ K, we then transition back to linear estimation. A KF

is re-initialized using the latest state estimate and estimate covariance from the nonlinear

estimator.

130



When the nonlinear estimator is a Unscented Kalman Filter or a Particle Filter, determining

whether or not the estimate is within the confidence interval is a much simpler process of

counting the particles or the sigma points.

In the case of the UKF, each sigma point corresponds to some fraction or whole of a standard

deviation away from the mean. If both the 1σ points are within the linear region, then we

can assert the estimate is also within linear region with 68% certainty. To achieve 99.7%

certainty, then the 3σ points must be within the linear region, and so on.

In the case of Particle Filters, the problem is even more straight-forward. For any state

variable xk[d] (the d-th dimension of the state), the particles {xk,i}Ni=1 can be sorted according

to the values of xk,i[d]. An arbitrary confidence interval 1 − α can be obtained by finding

the values corresponding to the α/2 and 1 − α/2 percentiles of the sorted particles (using

the weights of the particles in the calculations).

4.6.2 Scheduling Semantics

By parameterizing our control framework with a transition time, it can be considered an

implementation of prior literature [108] on scheduling mode changes in mixed criticality

systems. We adapt their work in Figure 4.6.

We consider the case of discrete sampling, where our state estimator runs at some specified

period T. There is also an additional actuation delay R, representing the delay from when

a sample is taken to when it impacts the physical actuation of a system. Depending on the

system model used, this delay may be inconsequential. If we only consider the accuracy

of the state estimate, without concern for where and how it may be used, then we can set

R = 0, without loss of generality.

ti ti+1 ti+k t∗i+k

Sample Sample Sample Actuation

T R

∆

...

Figure 4.6: Transition time over discrete sampling periods
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At minimum the time ∆ to transition from linear estimation to nonlinear estimation will

take one period.

∆ ≥ T

The case ∆ = T considers the case where the actual transition can be done immediately, and

∆ only considers the time to discover the conditions requiring a transition. For instance, if

an input violation happens an infinitesimally small time after one sample, then it will not

be discovered until the next sample, T time later.

The total time to transition is then

∆ = kT+R

Where k is some integer constant representing the number of sampling periods needed to

load and initialize a nonlinear estimation component.

4.7 Conclusions and Future Work

This paper introduces a novel framework for elastic scheduling of state estimators, enabling a

robust and safe handoff between linear and nonlinear estimation techniques in safety-critical

systems. By defining an augmented state-space that explicitly incorporates linearization

error, and leveraging barrier certificates, we established a formal definition of a ”safeset”

where linear approximations are acceptable.

The core contribution lies in the methodology for determining when to transition between

linear and nonlinear estimation. We demonstrated that, to ensure safety, the switch from

a linear to a nonlinear estimator must be predicated on system inputs exceeding predefined

bounds. This input bound is derived from the computation of a forward reachable set, which

defines a ”linear region” that remains invariant when the bounds are respected. This linear

region is formed as being the largest such invariant set that allows a safety buffer from the
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edge of the safeset. This buffer is computed using Hamilton-Jacobi methods to compute a

backwards reachable set.

For the transition back to linear estimation, the framework allows for the use of the more

accurate nonlinear state estimate, incorporating its uncertainty, to confirm that the system

has returned to a stable region of linearity and that inputs are within the prescribed safe

operating limits.

Future work includes the implementation of this framework for use in designing real-world

systems. Given some defined system dynamics and error function, a program could be

make to automatically compute the BRS of the error function. Then the forward reachable

set could be found by trial-and-error, treating the admissible set of inputs K as a tunable

parameter. If K is a continuous range in R, then this is as simple as tuning the limits of K

down so that the linear region never overlaps the BRS, and then tuning it up to maximize

volume.

The representation of the linear region and BRS is flexible. Typical tools for level set

methods [26, 80] use a discrete grid sampling some finite portion of the statespace. A state

coordinate can be determined to be in the linear region or the BRS by assessing the negativity

(in the case of the linear region) or the positivity (in the case of the BRS) of the respective

value function at the state coordinate.

This discrete sampling grid is highly memory intensive, especially for higher-dimensional

systems. Instead other methods [90, 109] use random Markov sampling to train a deep

learning model on the value function.

Using either these AI models, or a discrete grid representing the value function, a decision

procedure can be constructed to test whether a given state is in the linear region or the BRS.

The process of implementing a tool to automatically construct these decision procedures and

compute the associated input bound on the linear region remains fruitful future work.

Future work could also extend this framework for different scenarios. For instance

• Using the system dynamics to inform control barrier functions [5] that permit tempo-

rary transgressions of the linear region’s input bounds, while still guaranteeing safety.
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• Explore scheduling semantics of accelerated applications with mixed-devices. GPUs

are demonstrably better at linear operations like the Kalman Filter, but FPGAs are

likely better at nonlinear operations like the Extended Kalman Filter. Comingling

these two types of devices would incur extra memory synchronization and possibly a

longer handover window, but may be neccessary to operate safely in nonlinear regions.
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Appendix A

Hybrid-Array Lists

A hybrid array list (HAL) is a series of fragmented chunks of an array linked together in a

linked list. This allows for accelerated lookup times while retaining the O(1) insertion and

deletion times of conventional linked lists. Incorporating hashtables can reduce lookup time

to O(1) as well.

Each chunk is not assumed to be full, but it is assumed to have contiguous entries. The

entries are references to free blocks and are stacked in the front half of the chunk, with the

rear half leaving room for expansion. The entries are assumed to be sorted. A diagram of

our HAL design is presented in Figure A.1.

Insertion and removal operations do not trigger a full sort within the chunk. Since the chunk

is already sorted, all entries after that point are shifted to create or occupy the empty space.

The insertion/deletion point can be easily identified with a O(logn) binary search of the

chunk.

If insertion would cause the chunk to overflow, then it is split in two. If a removal would

cause the chunk to be empty, then it is removed from the larger linked list.

As in prior work, the time complexity of insertion and removal operations from Hybrid Array

Lists scales only on the size of the array chunk, not the length of the entire list.

Figure A.1: Structure of Hybrid Array List
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An algorithm is shown for initialization, Algorithm 9. Interactions with the HAL are de-

scribed below.

A.1 Insert

Once an insertion point has been identified, every item in the chunk at and past that point

must be shifted over. If the chunk is already completely full, it is first split, with half its

contents going to a new chunk.

After the shifting process, the item is inserted into its selected location. Insertion time is

linear with respect to the maximum size of the chunk, but does not scale with the size of

the wider list.

A.2 Remove

To remove an item from a chunk, every item after that point is shifted over to overwrite it.

If the item to be removed is the last item in the chunk, the chunk is removed from the HAL

by standard linked-list procedure.

A.3 Search

It is worth noting that, for our memory management purposes, search is done in reverse

order. Given that x is the requested deallocation address, yd is the corresponding block to

be deallocated, and y is the set of all blocks, we say:

yd = max(yi ∈ y) | yi ≤ x

As we iterate over the free list, we check the first (smallest) entry in each chunk. If it is

larger than x, clearly yd is not present, and we can continue checking the next previous
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chunk. Once an entry yi ≤ x, then we know that yd is somewhere in the current chunk. At

this point, a simple binary search can identify it.

In a more general sense, search over a sorted HAL is done linearly over each chunk until one

is confirmed to contain the element. Then a binary search is done within the chunk.

A.4 Iterators

As with any container, we can define iterators for a hybrid-array list to abstract the container

into an ordered range. An iterator is implemented as the pair of a chunk reference and an

index within that chunk.

The increment operation is normally as simple as incrementing the index. However, if doing

so would push it past the end (index ≥ count), then we perform

chunk ← chunk.next

index← 0
(A.1)

Decrement operations are very similar but in reverse. The index is normally decremented,

but if doing so would cause it to be negative, then we perform

chunk ← chunk.prev

index← chunk.count− 1
(A.2)
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Algorithm 9 Initialize Hybrid-Array List

1: free list head← alloc page
2: used list head← alloc page
3: free list head.count← 1
4: free list head.prev ← NULL
5: free list head.next← NULL
6: free list head.blocks[0].address← heap start
7: free list head.blocks[0].size← heap size
8: used list head.count← 0
9: used list head.prev ← NULL
10: used list head.next← NULL
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