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A common heuristic used in vertex-attack 

clustering[1] is betweenness centrality. The nodes with 

the highest centrality are good candidates for an attack 

set. 

Betweenness centrality is computationally 

expensive. If weight isn’t an issue, then Brandes[2] runs 

relatively quickly in O(VE) time (though it is not 

parallizable). But it is in the nature of road networks that 

weighting is important. Distance is one of the natural 

ways that we classify two cities as separate. For weighted 

graphs, we must use Johnson’s[3], which runs in a slower 

O(V2logV) time, but it is parallelizable. 

However, any road networks large enough to cluster 

tend to be very large, and a higher-order time complexity 

can be devastating. The state of California contains 1.6 

million intersections[5][7]. The Bay Area alone has 

430,694[4][7]. Running Johnson’s on the latter takes 

almost a week of CPU time. 

Johnson’s is based on Djikstra’s which is already 

used on road networks to find shortest path of travel. 

These shortest paths tend to have a bias towards 

Interstates and Highways, and so nodes lying on 

highways tend to have a higher centrality. 

Yet this is not an effective way to cluster cities. 

Highways can be find inside and outside cities. And there 

are still back-country roads that have a low centrality and 

don’t belong in any defined metropolitan area. In fact, 

betweenness centrality may be a completely useless 

measure due to the peculiar nature of road networks. 

This study utilizes road networks from the Bay Area 

(Fig 1) and the Los Angeles Metropolitan Area (LA) (Fig 

2)[4]. A base truth for sorting the tables was obtained 

from the Census Bureau[3], which supplies shapefiles 

outlining all municipalities in California (including 

unincorporated census designated places). These are 

used to color Fig 1 & 2. Each municipality has a unique 

color and any node outside a municipality is colored gray.  

Examining the centralities of nodes belonging inside 

and outside these areas provides no distinction between 

the two. Most nodes have a centrality of almost 0 (Table 

1, Fig 3). To help better illustrate true shape, histograms 

showing just the top 1% and 2% of nodes with highest 

centrality are also given for the Bay Area (Fig 5, 7) and LA 

(Fig 4, 6). 

Notice the shape of the distribution is highly similar 

regardless of whether the node is in a city or in a rural 

area. Also, the top 59 most central nodes in the Bay Area 

are all in cities. 

In LA (Fig 2, 6, 7), the lack of disparity between the 

centralities of nodes in and outside of cities is still 

present, but the entire chart has a lower average 

centrality. Comparing the maps for the Bay Area (Fig 1) 

and LA (Fig 2), it is apparent that LA has one supercluster 

of adjacent municipalities, whereas the Bay Area is more 

distributed. This suggests that when clusters are viewed 

more holistically, the average centrality will tend to be 

lower. This is likely due to the higher concentration of 

residential areas in cities, which tend to have a lower 

centrality because of their grid structure. However, this 

trend is impossible to observe on the scale of a local 

Figure 2 - Los Angeles Metropolitan Area 

Figure 1 - Bay Area 



node community, and is therefore only useful as an 

unreliable verification measure after a cluster has already 

been determined. 

In conclusion, although the unique characteristics of 

road networks promote certain quirks and even faint 

patterns in centrality, the large amount of computation 

required coupled with the lack of clear results to 

interpret obviates betweenness centrality as a viable 

metric to apply to these types of networks. 

 

 Bay Area Los Angeles 

All Nodes 95.00% 94.64% 

Inside Municipalities 95.15% 95.29% 

Outside Municipalities 93.42% 94.61% 
Table 1. Percent of Nodes with Centrality less than 0.001 
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